Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DANMA_2021_500_a6, author = {A. A. Kon'kov}, title = {Comparison theorems for elliptic inequalities with lower-order derivatives that take into account the geometry of the domain}, journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a}, pages = {35--39}, publisher = {mathdoc}, volume = {500}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DANMA_2021_500_a6/} }
TY - JOUR AU - A. A. Kon'kov TI - Comparison theorems for elliptic inequalities with lower-order derivatives that take into account the geometry of the domain JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2021 SP - 35 EP - 39 VL - 500 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2021_500_a6/ LA - ru ID - DANMA_2021_500_a6 ER -
%0 Journal Article %A A. A. Kon'kov %T Comparison theorems for elliptic inequalities with lower-order derivatives that take into account the geometry of the domain %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2021 %P 35-39 %V 500 %I mathdoc %U http://geodesic.mathdoc.fr/item/DANMA_2021_500_a6/ %G ru %F DANMA_2021_500_a6
A. A. Kon'kov. Comparison theorems for elliptic inequalities with lower-order derivatives that take into account the geometry of the domain. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 500 (2021), pp. 35-39. http://geodesic.mathdoc.fr/item/DANMA_2021_500_a6/
[1] Gariepy R., Ziemer W., “A regularity condition at the boundary for solutions of quasilinear elliptic equations”, Arch. Rat. Mech. Anal., 67 (1977), 25–39 | DOI | MR | Zbl
[2] Konkov A.A., “O teoremakh sravneniya dlya kvazilineinykh ellipticheskikh neravenstv, uchityvayuschikh geometriyu oblasti”, Izv. RAN. Ser. Matem., 78:4 (2014), 123–174 | DOI | MR | Zbl
[3] Kon'kov A.A., “On comparison theorems for elliptic inequalities”, J. Math. Anal. Appl., 388 (2012), 102–124 | DOI | MR | Zbl
[4] Landkof N.S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR
[5] Mazya V.G., Prostranstva S.L. Soboleva, Izd-vo LGU, L., 1985 | MR
[6] Mazya V.G., “O nepreryvnosti v granichnoi tochke reshenii kvazilineinykh ellipticheskikh uravnenii”, Vestnik LGU, 13:3 (1970), 42–55 | Zbl
[7] Mazya V.G., “O povedenii vblizi granitsy resheniya zadachi Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka v divergentnoi forme”, Matem. zametki, 2:2 (1967), 209–220