Comparison theorems for elliptic inequalities with lower-order derivatives that take into account the geometry of the domain
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 500 (2021), pp. 35-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

Comparison theorems are obtained with the help of which the spherical maximum of solutions of quasilinear elliptic inequalities containing lower-order derivatives is estimated in terms of solutions of the Cauchy problem for an ordinary differential equation with a right-hand side depending on the geometry of the domain.
Keywords: nonlinear elliptic operators, unbounded domains, capacity.
@article{DANMA_2021_500_a6,
     author = {A. A. Kon'kov},
     title = {Comparison theorems for elliptic inequalities with lower-order derivatives that take into account the geometry of the domain},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {35--39},
     publisher = {mathdoc},
     volume = {500},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_500_a6/}
}
TY  - JOUR
AU  - A. A. Kon'kov
TI  - Comparison theorems for elliptic inequalities with lower-order derivatives that take into account the geometry of the domain
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 35
EP  - 39
VL  - 500
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_500_a6/
LA  - ru
ID  - DANMA_2021_500_a6
ER  - 
%0 Journal Article
%A A. A. Kon'kov
%T Comparison theorems for elliptic inequalities with lower-order derivatives that take into account the geometry of the domain
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 35-39
%V 500
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_500_a6/
%G ru
%F DANMA_2021_500_a6
A. A. Kon'kov. Comparison theorems for elliptic inequalities with lower-order derivatives that take into account the geometry of the domain. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 500 (2021), pp. 35-39. http://geodesic.mathdoc.fr/item/DANMA_2021_500_a6/

[1] Gariepy R., Ziemer W., “A regularity condition at the boundary for solutions of quasilinear elliptic equations”, Arch. Rat. Mech. Anal., 67 (1977), 25–39 | DOI | MR | Zbl

[2] Konkov A.A., “O teoremakh sravneniya dlya kvazilineinykh ellipticheskikh neravenstv, uchityvayuschikh geometriyu oblasti”, Izv. RAN. Ser. Matem., 78:4 (2014), 123–174 | DOI | MR | Zbl

[3] Kon'kov A.A., “On comparison theorems for elliptic inequalities”, J. Math. Anal. Appl., 388 (2012), 102–124 | DOI | MR | Zbl

[4] Landkof N.S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR

[5] Mazya V.G., Prostranstva S.L. Soboleva, Izd-vo LGU, L., 1985 | MR

[6] Mazya V.G., “O nepreryvnosti v granichnoi tochke reshenii kvazilineinykh ellipticheskikh uravnenii”, Vestnik LGU, 13:3 (1970), 42–55 | Zbl

[7] Mazya V.G., “O povedenii vblizi granitsy resheniya zadachi Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka v divergentnoi forme”, Matem. zametki, 2:2 (1967), 209–220