On some modifications of Arnold's cat map
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 500 (2021), pp. 26-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

An effective method is proposed for constructing specific examples of Anosov diffeomorphisms on the torus $\mathbb{T}^2$, that are different from linear hyperbolic automorphisms. We introduce a special class of diffeomorphisms that are compositions of the well-known linear Arnold’s cat map and some diffeomorphisms homotopic to the identity. Constructively verified sufficient hyperbolicity conditions are established for this class of mappings.
Keywords: Arnold’s cat map, hyperbolicity, torus, Anosov diffeomorphism.
@article{DANMA_2021_500_a4,
     author = {S. D. Glyzin and A. Yu. Kolesov},
     title = {On some modifications of {Arnold's} cat map},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {26--30},
     publisher = {mathdoc},
     volume = {500},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_500_a4/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - A. Yu. Kolesov
TI  - On some modifications of Arnold's cat map
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 26
EP  - 30
VL  - 500
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_500_a4/
LA  - ru
ID  - DANMA_2021_500_a4
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A A. Yu. Kolesov
%T On some modifications of Arnold's cat map
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 26-30
%V 500
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_500_a4/
%G ru
%F DANMA_2021_500_a4
S. D. Glyzin; A. Yu. Kolesov. On some modifications of Arnold's cat map. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 500 (2021), pp. 26-30. http://geodesic.mathdoc.fr/item/DANMA_2021_500_a4/

[1] Dinamicheskie sistemy - 9, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 66, VINITI, M., 1991

[2] Katok A. B., Khasselblat B., Vvedenie v teoriyu dinamicheskikh sistem s obzorom poslednikh dostizhenii, MTsNMO, M., 2005

[3] Katok A. B., Khasselblat B., Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999

[4] Kolesov A.Yu., Rozov N.Kh, Sadovnichii V.A., Matem. zametki, 105:2 (2019), 251–268 | DOI | MR | Zbl

[5] Glyzin S.D., Kolesov A.Yu., Rozov N.Kh., Tr. MIAN, 308, 2020, 116–134 | DOI | Zbl

[6] Anosov D.V., Geodezicheskie potoki na zamknutykh rimanovykh mnogoobraziyakh otritsatelnoi krivizny, Tr. MIAN SSSR, 90, ed. I. G. Petrovskii, 1967

[7] Chigarev V., Kazakov A.O., Pikovsky A.S., International Journal of Bifurcation and Chaos, 30:7 (2020), 073114-1–073114-10 | MR

[8] Gonchenko S.V., Kainov M.N., Kazakov A.O., Turaev D.V., Izvestiya vuzov. PND, 29:1 (2021), 160–185