Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DANMA_2021_500_a15, author = {N. E. Yudin}, title = {Adaptive {Gauss--Newton} method for solving systems of nonlinear equations}, journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a}, pages = {87--91}, publisher = {mathdoc}, volume = {500}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DANMA_2021_500_a15/} }
TY - JOUR AU - N. E. Yudin TI - Adaptive Gauss--Newton method for solving systems of nonlinear equations JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2021 SP - 87 EP - 91 VL - 500 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2021_500_a15/ LA - ru ID - DANMA_2021_500_a15 ER -
%0 Journal Article %A N. E. Yudin %T Adaptive Gauss--Newton method for solving systems of nonlinear equations %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2021 %P 87-91 %V 500 %I mathdoc %U http://geodesic.mathdoc.fr/item/DANMA_2021_500_a15/ %G ru %F DANMA_2021_500_a15
N. E. Yudin. Adaptive Gauss--Newton method for solving systems of nonlinear equations. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 500 (2021), pp. 87-91. http://geodesic.mathdoc.fr/item/DANMA_2021_500_a15/
[1] Golikov A.I., Evtushenko Yu.G., Kaporin I.E., “Metod nyutonovskogo tipa dlya resheniya sistem lineinykh uravnenii i neravenstv”, ZhVMiMF, 59:12 (2019), 2086–2101 | DOI | MR | Zbl
[2] Nesterov Yu., Lectures on convex optimization, Springer Optimization and Its Applications, 137, Springer, Berlin, Germany, 2018 | DOI | MR | Zbl
[3] Gasnikov A. V., Sovremennye chislennye metody optimizatsii. Metod universalnogo gradientnogo spuska, MTsNMO, M., 2020
[4] Nesterov Yu., “Modified Gauss-Newton scheme with worst case guarantees for global performance”, Optimisation methods and software, 22:3 (2007), 469–483 | DOI | MR | Zbl
[5] Gorbunov E., Hanzely F., Richtárik P., “A unified theory of sgd: Variance reduction, sampling, quantization and coordinate descent”, International Conference on Artificial Intelligence and Statistics. PMLR 2020, 680–690 | MR
[6] Polyak B.T., “Gradientnye metody minimizatsii funktsionalov”, ZhVMiMF, 3:4 (1963), 643–653 | Zbl
[7] Nesterov Yu., Flexible Modification of Gauss-Newton Method, CORE Discussion Papers, 2021
[8] Yudin N., Gasnikov A., Flexible Modification of Gauss-Newton Method and Its Stochastic Extension, WIAS No 2813, 2021 | DOI