Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DANMA_2021_500_a14, author = {M. V. Shamolin}, title = {New cases of integrability of systems of geodesics and potential and dissipative systems on tangent bundles of finite-dimensional manifolds}, journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a}, pages = {78--86}, publisher = {mathdoc}, volume = {500}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DANMA_2021_500_a14/} }
TY - JOUR AU - M. V. Shamolin TI - New cases of integrability of systems of geodesics and potential and dissipative systems on tangent bundles of finite-dimensional manifolds JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2021 SP - 78 EP - 86 VL - 500 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2021_500_a14/ LA - ru ID - DANMA_2021_500_a14 ER -
%0 Journal Article %A M. V. Shamolin %T New cases of integrability of systems of geodesics and potential and dissipative systems on tangent bundles of finite-dimensional manifolds %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2021 %P 78-86 %V 500 %I mathdoc %U http://geodesic.mathdoc.fr/item/DANMA_2021_500_a14/ %G ru %F DANMA_2021_500_a14
M. V. Shamolin. New cases of integrability of systems of geodesics and potential and dissipative systems on tangent bundles of finite-dimensional manifolds. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 500 (2021), pp. 78-86. http://geodesic.mathdoc.fr/item/DANMA_2021_500_a14/