Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DANMA_2021_500_a14, author = {M. V. Shamolin}, title = {New cases of integrability of systems of geodesics and potential and dissipative systems on tangent bundles of finite-dimensional manifolds}, journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a}, pages = {78--86}, publisher = {mathdoc}, volume = {500}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DANMA_2021_500_a14/} }
TY - JOUR AU - M. V. Shamolin TI - New cases of integrability of systems of geodesics and potential and dissipative systems on tangent bundles of finite-dimensional manifolds JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2021 SP - 78 EP - 86 VL - 500 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2021_500_a14/ LA - ru ID - DANMA_2021_500_a14 ER -
%0 Journal Article %A M. V. Shamolin %T New cases of integrability of systems of geodesics and potential and dissipative systems on tangent bundles of finite-dimensional manifolds %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2021 %P 78-86 %V 500 %I mathdoc %U http://geodesic.mathdoc.fr/item/DANMA_2021_500_a14/ %G ru %F DANMA_2021_500_a14
M. V. Shamolin. New cases of integrability of systems of geodesics and potential and dissipative systems on tangent bundles of finite-dimensional manifolds. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 500 (2021), pp. 78-86. http://geodesic.mathdoc.fr/item/DANMA_2021_500_a14/
[1] Shamolin M.V., “Ob integriruemosti v transtsendentnykh funktsiyakh”, Uspekhi matem. nauk, 53:3 (1998), 209–210 | DOI | MR | Zbl
[2] Shamolin M.V., “Novye sluchai integriruemykh sistem s dissipatsiei na kasatelnom rassloenii k mnogomernoi sfere”, DAN, 474:2 (2017), 177–181 | MR
[3] Shamolin M.V., “Novye sluchai integriruemykh sistem s dissipatsiei na kasatelnom rassloenii mnogomernogo mnogoobraziya”, DAN, 482:5 (2018), 527–533
[4] Kozlov V.V., “Tenzornye invarianty i integrirovanie differentsialnykh uravnenii”, Uspekhi matem. nauk, 74:1 (2019), 117–148 | DOI | MR | Zbl
[5] Borisov A.V., Mamaev I.S., Sovremennye metody teorii integriruemykh sistem, In-t kompyuternykh issledovanii, M.-Izhevsk, 2003, 294 pp. | MR
[6] Novikov S.P., Taimanov I.A., Sovremennye geometricheskie struktury i polya, MTsNMO, M., 2005, 584 pp.
[7] Kozlov V.V., “Ratsionalnye integraly kvaziodnorodnykh dinamicheskikh sistem”, Prikl. matem. i mekhan., 79:3 (2015), 307–316 | Zbl
[8] Klein F., Neevklidova geometriya, Per. s nem., 4-e izd., ispr., obnovl., URSS, M., 2017, 352 pp.
[9] Veil G., Simmetriya, URSS, M., 2007
[10] Kozlov V.V., “Integriruemost i neintegriruemost v gamiltonovoi mekhanike”, Uspekhi matem. nauk, 38:1 (1983), 3–67 | MR | Zbl
[11] Puankare A., O krivykh, opredelyaemykh differentsialnymi uravneniyami, OGIZ, M.-L., 1947
[12] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1976
[13] Trofimov V.V., Shamolin M.V., “Geometricheskie i dinamicheskie invarianty integriruemykh gamiltonovykh i dissipativnykh sistem”, Fundam. i prikl. matem., 16:4 (2010), 3–229
[14] Shamolin M.V., “Novye sluchai odnorodnykh integriruemykh sistem s dissipatsiei na kasatelnom rassloenii trekhmernogo mnogoobraziya”, Doklady RAN. Matematika, informatika, protsessy upravleniya, 495:1 (2020), 84–90 | DOI | Zbl
[15] Shabat B.V., Vvedenie v kompleksnyi analiz, Nauka, M., 1987 | MR