Existence and stability of equilibrium solutions of the Vlasov equation with a modified gravitational potential
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 500 (2021), pp. 67-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a system of mutually gravitating particles with possible collisions, which is modeled by supplementing the gravitational potential with the potential of repulsive forces similar to Lennard-Jones intermolecular forces. For an infinite number of particles, the probability density function is determined by the Vlasov kinetic equation with a modified gravitational potential. The existence of a large class of nonlinearly stable equilibrium solutions of this equation is proved using the energy–Casimir method.
Keywords: energy–Casimir method, nonlinear stability, Lennard-Jones type potential.
@article{DANMA_2021_500_a12,
     author = {T. V. Sal'nikova},
     title = {Existence and stability of equilibrium solutions of the {Vlasov} equation with a modified gravitational potential},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {67--73},
     publisher = {mathdoc},
     volume = {500},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_500_a12/}
}
TY  - JOUR
AU  - T. V. Sal'nikova
TI  - Existence and stability of equilibrium solutions of the Vlasov equation with a modified gravitational potential
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 67
EP  - 73
VL  - 500
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_500_a12/
LA  - ru
ID  - DANMA_2021_500_a12
ER  - 
%0 Journal Article
%A T. V. Sal'nikova
%T Existence and stability of equilibrium solutions of the Vlasov equation with a modified gravitational potential
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 67-73
%V 500
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_500_a12/
%G ru
%F DANMA_2021_500_a12
T. V. Sal'nikova. Existence and stability of equilibrium solutions of the Vlasov equation with a modified gravitational potential. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 500 (2021), pp. 67-73. http://geodesic.mathdoc.fr/item/DANMA_2021_500_a12/

[1] Vlasov A.A., Statisticheskie funktsii raspredeleniya, Nauka, M., 1966, 356 pp.

[2] Vedenyapin V.V., Kineticheskie uravneniya Boltsmana i Vlasova, Fizmatlit, M., 2001

[3] Kozlov V.V., “Obobschennoe kineticheskoe uravnenie Vlasova”, UMN, 63:4 (2008), 93–130 | DOI | MR | Zbl

[4] Landau L.D., Lifshits E.M., Teoreticheskaya fizika, v. 10, Fizicheskaya kinetika, Nauka, M., 1979

[5] Rein G., “Collisionless Kinetic Equations from Astrophysics : The Vlasov-Poisson System”, Handbook of Differential Equations : Evolutionary Equations, v. 3, eds. Dafermos Constantine M., Feireisl E., Elsevier, Amsterdam, 2007, 383–476 | DOI | MR | Zbl

[6] Salnikova T.V., Kugushev E.I., Stepanov S.Ya., “Ustoichivost po Yakobi sistemy mnogikh tel s modifitsirovannym potentsialom”, Doklady Rossiiskoi akademii nauk. Matematika, informatika, protsessy upravleniya, 491 (2020), 90–91 | DOI

[7] Arnold V.I., “Conditions for nonlinear stability of the stationary plane curvilinear flows of an ideal fluid”, Doklady Mat. Nauk, 162:5 (1969), 773–777 | MR

[8] Arnold V.I., “Variational principle for three dimensional steady-state flows of an ideal fluid”, J. AppI. Math. Mech., 29 (1965), 1002–1008 | DOI | MR | Zbl

[9] Holm D. D., Marsden J. E., RatiuT., A. Weinstein A., “Nonlinear stability of fluid and plasma equilibria”, Physics Reports, 123:1–2 (1985), 1–116 | DOI | MR | Zbl

[10] Guo Y., Rein G., “Isotropic steady states in galactic dynamics”, Comm. Math. Phys., 219 (2001), 607–629 | DOI | MR | Zbl

[11] Guo Y., Rein G., “Stable models of elliptical galaxies”, Mon. Not. R. Astron. Soc., 344 (2003), 1396–1406

[12] Rein G., “Reduction and a concentration-compactness principle for energy- Casimir functionals”, SIAM J. Math. Anal., 33 (2002), 896–912 | DOI | MR

[13] Firt R., Rein G., “Stability of disk-like galaxies: Part I: Stability via reduction”, Analysis, 26:4 (2007), 507–525 | MR

[14] Mouhot C., Stabilité orbitale pour le système de Vlasov-Poisson gravitationnel, arXiv: 1201.2275v2 [math.AP]

[15] Marcinkiewicz J., “Sur l'interpolation d'opérations”, C. R. Acad. Sc. Paris, 208 (1939), 1272–1273 | Zbl