Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DANMA_2021_500_a11, author = {N. A. Rautian}, title = {Correct solvability and exponential stability for solutions of {Volterra} integro-differential equations}, journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a}, pages = {62--66}, publisher = {mathdoc}, volume = {500}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DANMA_2021_500_a11/} }
TY - JOUR AU - N. A. Rautian TI - Correct solvability and exponential stability for solutions of Volterra integro-differential equations JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2021 SP - 62 EP - 66 VL - 500 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2021_500_a11/ LA - ru ID - DANMA_2021_500_a11 ER -
%0 Journal Article %A N. A. Rautian %T Correct solvability and exponential stability for solutions of Volterra integro-differential equations %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2021 %P 62-66 %V 500 %I mathdoc %U http://geodesic.mathdoc.fr/item/DANMA_2021_500_a11/ %G ru %F DANMA_2021_500_a11
N. A. Rautian. Correct solvability and exponential stability for solutions of Volterra integro-differential equations. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 500 (2021), pp. 62-66. http://geodesic.mathdoc.fr/item/DANMA_2021_500_a11/
[1] Ilyushin A.A., Pobedrya B.E., Osnovy matematicheskoi teorii termovyazkouprugosti, Nauka, M., 1970, 280 pp. | MR
[2] Christensen R.M., Theory of viscoelasticity. An introduction, Academic Press, N.Y.–L., 1971, 364 pp.
[3] Kopachevsky N.D., Krein S.G., Operator Approach to Linear Problems of Hydrodynamics, v. 2, Operator Theory: Advances and Applications, 146, Nonself-adjoint Problems for Viscous Fluids, Birkhauser Verlag, Basel/Switzerland, 2003, 444 pp. | MR | Zbl
[4] Munoz Rivera J.E., “Asymptotic behaviour in linear viscoelasticity”, Quart. Appl. Math., 52 (1994), 629–648 | MR | Zbl
[5] Amendola G., Fabrizio M., Golden J.M., Thermodynamics of Materials with memory. Theory and applications, Springer, N.Y.–Dordrecht–Heidelberg–L., 2012, 576 pp. | MR | Zbl
[6] Lokshin A.A., Suvorova Yu.V., Matematicheskaya teoriya rasprostraneniya voln v sredakh s pamyatyu, Izd-vo MGU, M., 1982, 152 pp. | MR
[7] Gurtin M.E., Pipkin A.C., “General theory of heat conduction with finite wave speed”, Arch. Rat. Mech. Anal., 31 (1968), 113–126 | DOI | MR | Zbl
[8] Lykov A.V., Teplomassoobmen, Spravochnik, 2-e izd., pererab. i dop., Energiya, M., 1978, 480 pp.
[9] Sanches-Palensiya E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984 | MR
[10] Rabotnov Yu.N., Elementy nasledstvennoi mekhaniki tverdykh tel, Nauka, M., 1977, 384 pp. | MR
[11] Krein S.G., Lineinye differentsialnye uravneniya v banakhovykh prostranstvakh, Nauka, M., 1967, 464 pp.
[12] Engel K.J., Nagel R., One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, N.Y., 2000, 586 pp. | MR | Zbl
[13] Vlasov V.V., Rautian N.A., “Correct solvability and representation of solutions of volterra integrodifferential equations with fractional exponential kernels”, Doklady Mathematics, 100:2 (2019), 467–471 | DOI | MR | Zbl
[14] Vlasov V.V., Rautian N.A., “A Study of Operator Models Arising in Problems of Hereditary Mechanics”, Journal of Mathematical Sciences (N.Y.), 244:2 (2020), 170–182 | DOI | MR | Zbl
[15] Skubachevskii A.L., “Boundary-value problems for elliptic functional-differential equations and their applications”, Russian Mathematical Surveys, 71:5 (2016), 801–906 | DOI | MR | Zbl