Numerical study of the Zaremba problem
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 500 (2021), pp. 5-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the eigenvalue problem for a two-dimensional Laplace operator with mixed boundary conditions (Zaremba problem), which (presumably) has a smooth solution inside the domain. Calculations show that the operator $-\Delta$ has a negative eigenvalue, i.e., it is not positive definite.
Keywords: numerical algorithms without saturation, Zaremba problem, eigenvalue problem with mixed boundary conditions.
@article{DANMA_2021_500_a0,
     author = {S. D. Algazin},
     title = {Numerical study of the {Zaremba} problem},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {5--9},
     publisher = {mathdoc},
     volume = {500},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_500_a0/}
}
TY  - JOUR
AU  - S. D. Algazin
TI  - Numerical study of the Zaremba problem
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 5
EP  - 9
VL  - 500
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_500_a0/
LA  - ru
ID  - DANMA_2021_500_a0
ER  - 
%0 Journal Article
%A S. D. Algazin
%T Numerical study of the Zaremba problem
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 5-9
%V 500
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_500_a0/
%G ru
%F DANMA_2021_500_a0
S. D. Algazin. Numerical study of the Zaremba problem. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 500 (2021), pp. 5-9. http://geodesic.mathdoc.fr/item/DANMA_2021_500_a0/

[1] Babenko K.I., Osnovy chislennogo analiza, Nauka, M., 1986, 744 s. pp. ; 2-е изд., испр. и доп., ред. А.Д. Брюно, РХД, М.–Ижевск, 2002, 847 с. | MR

[2] Babenko K.I., Algazin S.D., Ob odnom chislennom algoritme resheniya zadachi na sobstvennye znacheniya dlya lineinykh differentsialnykh operatorov, preprint IPM AN SSSR, No 46, M., 1978

[3] Zaremba S., “Sur un problème mixte relatifà l'èquation de Laplace”, Bull. Acad. Sci. Cracovie, 1910, 314–344

[4] Peicheva A.S., O spektralnykh svoistvakh operatorov, assotsiirovannykh s nekoertsitivnymi smeshannymi zadachami dlya ellipticheskikh sistem, 01.01.01 - veschestvennyi, kompleksnyi i funktsionalnyi analiz, Diss. ... kand. fiz.-mat. nauk, Krasnoyarsk, 2018, 138 pp.

[5] Laptev Ari, Peicheva A., Shlapunov A., “Finding Eigenvalues and Eigenfunctions of the Zaremba Problem for the Circle”, Complex Anal. Oper. Theory, 11:4 (2017), 895–926 | DOI | MR | Zbl

[6] Shlapunov A., Tarkhanov N., “On completeness of root functions of Sturm-Liouville problems with discontinuous boundary operators”, J. Differential Equations, 255 (2013), 3305–3337 | DOI | MR | Zbl

[7] Shlapunov A., Tarkhanov N., “Mixed Problems with Parameter”, Russian J. Math. Phys., 12:1 (2005), 97–119 | MR | Zbl

[8] Tarkhanov N., Shlapunov A.A., “Zadachi Shturma-Liuvillya v vesovykh prostranstvakh v oblastyakh s negladkimi rebrami. I”, Matematicheskie trudy, 18:1 (2015), 118–189 | Zbl

[9] Tarkhanov N., Shlapunov A.A., “Zadachi Shturma-Liuvillya v vesovykh prostranstvakh v oblastyakh s negladkimi rebrami. II”, Matematicheskie trudy, 18:2 (2015), 133–204 | MR | Zbl

[10] Algazin S.D., Chislennye algoritmy klassicheskoi matematicheskoi fiziki, Dialog-MIFI, M., 2010, 240 pp.