Numerical study of the Zaremba problem
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 500 (2021), pp. 5-9

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the eigenvalue problem for a two-dimensional Laplace operator with mixed boundary conditions (Zaremba problem), which (presumably) has a smooth solution inside the domain. Calculations show that the operator $-\Delta$ has a negative eigenvalue, i.e., it is not positive definite.
Keywords: numerical algorithms without saturation, Zaremba problem, eigenvalue problem with mixed boundary conditions.
@article{DANMA_2021_500_a0,
     author = {S. D. Algazin},
     title = {Numerical study of the {Zaremba} problem},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {5--9},
     publisher = {mathdoc},
     volume = {500},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_500_a0/}
}
TY  - JOUR
AU  - S. D. Algazin
TI  - Numerical study of the Zaremba problem
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 5
EP  - 9
VL  - 500
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_500_a0/
LA  - ru
ID  - DANMA_2021_500_a0
ER  - 
%0 Journal Article
%A S. D. Algazin
%T Numerical study of the Zaremba problem
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 5-9
%V 500
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_500_a0/
%G ru
%F DANMA_2021_500_a0
S. D. Algazin. Numerical study of the Zaremba problem. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 500 (2021), pp. 5-9. http://geodesic.mathdoc.fr/item/DANMA_2021_500_a0/