Covering planar sets
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 499 (2021), pp. 44-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

Methods for improving upper and lower bounds for various coverings of planar sets are proposed. New bounds for various numbers of partition constituents are presented, and suggestions for the generalization of the presented methods are offered.
Keywords: Borsuk problem, diameter of a set, coverings of planar sets, universal covering systems, chromatic number.
@article{DANMA_2021_499_a9,
     author = {A. D. Tolmachev and D. S. Protasov},
     title = {Covering planar sets},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {44--48},
     publisher = {mathdoc},
     volume = {499},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_499_a9/}
}
TY  - JOUR
AU  - A. D. Tolmachev
AU  - D. S. Protasov
TI  - Covering planar sets
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 44
EP  - 48
VL  - 499
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_499_a9/
LA  - ru
ID  - DANMA_2021_499_a9
ER  - 
%0 Journal Article
%A A. D. Tolmachev
%A D. S. Protasov
%T Covering planar sets
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 44-48
%V 499
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_499_a9/
%G ru
%F DANMA_2021_499_a9
A. D. Tolmachev; D. S. Protasov. Covering planar sets. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 499 (2021), pp. 44-48. http://geodesic.mathdoc.fr/item/DANMA_2021_499_a9/

[1] Borsuk K., “Drei Sätze über die n-dimensionale euklidische Sphäre”, Fundamenta Math., 20 (1933), 177–190 | DOI | Zbl

[2] Raigorodskii A.M., “Coloring Distance Graphs and Graphs of Diameters”, Thirty Essays on Geometric Graph Theory, ed. J. Pach, Springer, 2013, 429–460 | DOI | MR | Zbl

[3] Raigorodskii A.M., “O razbienii mnozhestv na chasti menshego diametra”, Doklady RAN. Matematika, informatika, protsessy upravleniya, 495 (2020), 74–77 | DOI | Zbl

[4] Berdnikov A.V., Raigorodskii A.M., “Bounds for Borsuk's numbers using special distance graphs”, Information Transmission Problems (to appear)

[5] Lenz H., “Zerlegung ebener Bereiche in konvexe Zellen von möglichst kleinem Durchmesser”, Jber. Deutsch. Math. Verein, 58 (1956), 87–97 | MR | Zbl

[6] Dembiński M., Lassak M., “Covering plane sets with sets of three times less diameter”, Demonstratio Math., 18:2 (1985), 517–526 | DOI | MR | Zbl

[7] Filimonov V.P., “O pokrytii ploskikh mnozhestv”, Matem. sbornik, 201:8 (2010), 127–160 | DOI | Zbl

[8] Belov D., Aleksandrov N., “O razbienii ploskikh mnozhestv na shest chastei malogo diametra”, Trudy MFTI, 4:1 (2012), 11–13

[9] Koval V.O., “O razbienii ploskikh mnozhestv na 6 chastei malogo diametra”, Zap. nauchn. sem. POMI, 497, 2020, 100–123

[10] Pal J., “Uber ein elementares Variationsproblem”, Danske Videnskab. Selskab. Math.-Fys. Meddel, 3:2 (1920)

[11] Raigorodskii A.M., “Problema Borsuka i khromaticheskie chisla metricheskikh prostranstv”, Uspekhi matem. nauk, 56:1 (2001), 107–146 | DOI | MR | Zbl

[12] Prosanov R.I., “Kontrprimery k gipoteze Borsuka, imeyuschie bolshoi obkhvat”, Matem. zametki, 105:6 (2019), 890–898 | DOI | MR | Zbl

[13] Bogolyubskii L.I., Raigorodskii A.M., “Zamechanie o nizhnikh otsenkakh khromaticheskikh chisel prostranstv maloi razmernosti s metrikami ${{l}_{1}}$ i ${{l}_{2}}$”, Matem. zametki, 105:2 (2019), 187–213 | DOI | MR | Zbl

[14] Raigorodskii A.M., Koshelev M.M., “New bounds on clique-chromatic numbers of Johnson graphs”, Discrete and Applied Math., 283 (2020), 724–729 | DOI | MR | Zbl

[15] Raigorodskii A.M., Koshelev M.M., “Novye otsenki kliko-khromaticheskikh chisel grafov Dzhonsona”, Doklady RAN. Matematika, informatika, protsessy upravleniya, 490 (2020), 78–80 | DOI | Zbl

[16] Prosanov R., “A new proof of the Larman-Rogers upper bound for the chromatic number of the Euclidean space”, Discrete Applied Mathematics, 2020, no. 276, 115–120 | DOI | MR | Zbl

[17] Kupavskii A.B., Sagdeev A.A., “Teoriya Ramseya v prostranstve s chebyshevskoi metrikoi”, Uspekhi matem. nauk, 75:5 (2020), 191–192 | DOI | MR | Zbl

[18] Razbieniya dlya verkhnikh otsenok, https://github.com/Vosatorp/Partitions