On the correct solvability of the Dirichlet boundary value problem for the generalized Helmholtz equation in a strip
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 499 (2021), pp. 31-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

Within the framework of the theory of operator cosine functions and its application, a solution of the Dirichlet boundary value problem for the generalized Helmholtz equation in a strip is found and the correct solvability of this problem is established. The critical width of the strip is found depending on the boundary conditions. Applying this result to the problem of heat propagation in a dihedral angle allows us to determine the angle of correctness of this problem and specify the law of heat propagation in the considered region.
Keywords: strongly continuous cosine functions and transformation semigroups, boundary value problems, correct solvability.
@article{DANMA_2021_499_a6,
     author = {V. A. Kostin and D. V. Kostin and A. V. Kostin},
     title = {On the correct solvability of the {Dirichlet} boundary value problem for the generalized {Helmholtz} equation in a strip},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {31--34},
     publisher = {mathdoc},
     volume = {499},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_499_a6/}
}
TY  - JOUR
AU  - V. A. Kostin
AU  - D. V. Kostin
AU  - A. V. Kostin
TI  - On the correct solvability of the Dirichlet boundary value problem for the generalized Helmholtz equation in a strip
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 31
EP  - 34
VL  - 499
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_499_a6/
LA  - ru
ID  - DANMA_2021_499_a6
ER  - 
%0 Journal Article
%A V. A. Kostin
%A D. V. Kostin
%A A. V. Kostin
%T On the correct solvability of the Dirichlet boundary value problem for the generalized Helmholtz equation in a strip
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 31-34
%V 499
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_499_a6/
%G ru
%F DANMA_2021_499_a6
V. A. Kostin; D. V. Kostin; A. V. Kostin. On the correct solvability of the Dirichlet boundary value problem for the generalized Helmholtz equation in a strip. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 499 (2021), pp. 31-34. http://geodesic.mathdoc.fr/item/DANMA_2021_499_a6/

[1] Tikhonov A.N., Samarskii A.A., Uravneniya matematicheskoi fiziki, Nauka, M., 1977 | MR

[2] Karslou G., Eger D., Teploprovodnost tverdykh tel, Nauka, M., 1964, 488 pp.

[3] Maslov V.P., Danilov V.G., Volosov K.A., Matematicheskoe modelirovanie protsessov teplo-massoperenosa, Glavnaya redaktsiya fiziko-matematicheskoi literatury izd-va “Nauka”, M., 1987, 352 pp.

[4] Gorbachuk V.I., Knyazyuk A.I., “Granichnye znacheniya reshenii differentsialno-operatornykh uravnenii”, Uspekhi mat. nauk, 44:3 (1989), 55–91 | MR | Zbl

[5] Krein S.G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967, 464 pp.

[6] Kurepa S., “Semigroups and cosine functions”, Lecture Notes in Math., 948, Springer, B., 1982, 47–72 | DOI | MR

[7] Kostin V.A., Kostin D.V., Kostin A.V., “Operatornye kosinus-funktsii i granichnye zadachi”, DAN, 486:5 (2019), 531–536

[8] Goldstein Dzh., Polugruppy lineinykh operatorov i ikh prilozheniya, Vyscha shkola, Kiev, 1989, 347 pp.

[9] Volkov I.K., Kanatnikov A.N., Integralnye preobrazovaniya i operatornoe ischislenie, Izd-vo MGTU im. Baumana, 1999, 227 pp.