On a strengthening of the non-isomorphism theorem for provability algebras
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 499 (2021), pp. 26-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a strengthened version of V. Shavrukov’s result on the non-isomorphism of provability algebras of two $\Sigma_1$-sound theories, based on the improvements previously discovered by G. Adamsson. We then obtain several corollaries to the strengthened result by applying it to various pairs of theories and obtain new non-isomorphism examples. In particular, we show that there are no epimorphisms from $(\mathfrak{L}_T,\square_T\square_T)$ onto $(\mathfrak{L}_T,\square_T)$.
Keywords: provability predicate, provability algebra, reflection principle.
@article{DANMA_2021_499_a5,
     author = {E. A. Kolmakov},
     title = {On a strengthening of the non-isomorphism theorem for provability algebras},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {26--30},
     publisher = {mathdoc},
     volume = {499},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_499_a5/}
}
TY  - JOUR
AU  - E. A. Kolmakov
TI  - On a strengthening of the non-isomorphism theorem for provability algebras
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 26
EP  - 30
VL  - 499
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_499_a5/
LA  - ru
ID  - DANMA_2021_499_a5
ER  - 
%0 Journal Article
%A E. A. Kolmakov
%T On a strengthening of the non-isomorphism theorem for provability algebras
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 26-30
%V 499
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_499_a5/
%G ru
%F DANMA_2021_499_a5
E. A. Kolmakov. On a strengthening of the non-isomorphism theorem for provability algebras. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 499 (2021), pp. 26-30. http://geodesic.mathdoc.fr/item/DANMA_2021_499_a5/

[1] Adamsson G., Diagonalizable Algebras and the Length of Proofs, Magister-uppsats, Göteborgs universitet/Institutionen för filosofi, lingvistik och vetenskapsteori, 2011

[2] Beklemishev L.D., “A Proof-theoretic Analysis of Collection”, Arch. Math. Logic, 37 (1998), 275–296 | DOI | MR | Zbl

[3] Beklemishev L.D., “Proof-theoretic Analysis by Iterated Reflection”, Arch. Math. Logic, 42 (2003), 515–552 | DOI | MR | Zbl

[4] Beklemishev L.D., “Skhemy refleksii i algebry dokazuemosti v formalnoi arifmetike”, UMN, 60:2 (2005), 3–78 | DOI | MR | Zbl

[5] Magari R., “The Diagonalizable Algebras (the Algebraization of the Theories Which Express Theor.: II)”, Boll. d. Unione Matem. Ital. Suppl. fasc. 3, 4:12 (1975), 117–125 | MR

[6] Pour-El M.B., Kripke S., “Deduction-preserving “Recursive Isomorphisms” Between Theories”, Fund. Math., 61 (1967), 141–163 | DOI | MR | Zbl

[7] Shavrukov V.Yu., “A note on the diagonalizable algebras of ${\text{PA}}$ and ${\text{ZF}}$”, Ann. Pure Appl. Logic, 61 (1993), 161–173 | DOI | MR | Zbl

[8] Shavrukov V.Yu., Subalgebras of diagonalizable algebras of theories containing arithmetic, Diss. Math., 323, 1993 | MR | Zbl

[9] Shavrukov V.Yu., “Isomorphisms of diagonalizable algebras”, Theoria, 63:3 (1997), 210–221 | DOI | MR

[10] Shavrukov V.Yu., “Undecidability in diagonalizable algebras”, J. Symbolic Logic, 62:1 (1997), 79–116 | DOI | MR | Zbl

[11] Solovay R.M., “Provability interpretations of modal logic”, Isr. J. Math., 25 (1976), 287–304 | DOI | MR | Zbl