Asymptotics of the independence number of a random subgraph of the graph $G(n,r,$
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 499 (2021), pp. 17-19

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we deal with a probabilistic version of a classical problem in extremal combinatorics. An extension to the case of nonconstant parameters and to the case of different probabilities of edges is established for a stability theorem asserting that the independence number of a random subgraph of a graph $G(n,r,$ does not change asymptotically, provided that the initial edges are deleted independently.
Keywords: asymptotics, independence number, random subgraphs, graph $G(n,r,
@article{DANMA_2021_499_a3,
     author = {V. S. Karas and P. A. Ogarok and A. M. Raigorodskii},
     title = {Asymptotics of the independence number of a random subgraph of the graph $G(n,r,<s)$},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {17--19},
     publisher = {mathdoc},
     volume = {499},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_499_a3/}
}
TY  - JOUR
AU  - V. S. Karas
AU  - P. A. Ogarok
AU  - A. M. Raigorodskii
TI  - Asymptotics of the independence number of a random subgraph of the graph $G(n,r,
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 17
EP  - 19
VL  - 499
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_499_a3/
LA  - ru
ID  - DANMA_2021_499_a3
ER  - 
%0 Journal Article
%A V. S. Karas
%A P. A. Ogarok
%A A. M. Raigorodskii
%T Asymptotics of the independence number of a random subgraph of the graph $G(n,r,
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 17-19
%V 499
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_499_a3/
%G ru
%F DANMA_2021_499_a3
V. S. Karas; P. A. Ogarok; A. M. Raigorodskii. Asymptotics of the independence number of a random subgraph of the graph $G(n,r,