Asymptotics of the independence number of a random subgraph of the graph $G(n,r,$
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 499 (2021), pp. 17-19
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we deal with a probabilistic version of a classical problem in extremal combinatorics. An extension to the case of nonconstant parameters and to the case of different probabilities of edges is established for a stability theorem asserting that the independence number of a random subgraph of a graph $G(n,r,$ does not change asymptotically, provided that the initial edges are deleted independently.
Keywords:
asymptotics, independence number, random subgraphs, graph $G(n,r,
@article{DANMA_2021_499_a3,
author = {V. S. Karas and P. A. Ogarok and A. M. Raigorodskii},
title = {Asymptotics of the independence number of a random subgraph of the graph $G(n,r,<s)$},
journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
pages = {17--19},
publisher = {mathdoc},
volume = {499},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DANMA_2021_499_a3/}
}
TY - JOUR AU - V. S. Karas AU - P. A. Ogarok AU - A. M. Raigorodskii TI - Asymptotics of the independence number of a random subgraph of the graph $G(n,r, JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2021 SP - 17 EP - 19 VL - 499 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2021_499_a3/ LA - ru ID - DANMA_2021_499_a3 ER -
%0 Journal Article %A V. S. Karas %A P. A. Ogarok %A A. M. Raigorodskii %T Asymptotics of the independence number of a random subgraph of the graph $G(n,r, %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2021 %P 17-19 %V 499 %I mathdoc %U http://geodesic.mathdoc.fr/item/DANMA_2021_499_a3/ %G ru %F DANMA_2021_499_a3
V. S. Karas; P. A. Ogarok; A. M. Raigorodskii. Asymptotics of the independence number of a random subgraph of the graph $G(n,r,