Asymptotics of the independence number of a random subgraph of the graph $G(n,r,$
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 499 (2021), pp. 17-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we deal with a probabilistic version of a classical problem in extremal combinatorics. An extension to the case of nonconstant parameters and to the case of different probabilities of edges is established for a stability theorem asserting that the independence number of a random subgraph of a graph $G(n,r,$ does not change asymptotically, provided that the initial edges are deleted independently.
Keywords: asymptotics, independence number, random subgraphs, graph $G(n,r,
@article{DANMA_2021_499_a3,
     author = {V. S. Karas and P. A. Ogarok and A. M. Raigorodskii},
     title = {Asymptotics of the independence number of a random subgraph of the graph $G(n,r,<s)$},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {17--19},
     publisher = {mathdoc},
     volume = {499},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_499_a3/}
}
TY  - JOUR
AU  - V. S. Karas
AU  - P. A. Ogarok
AU  - A. M. Raigorodskii
TI  - Asymptotics of the independence number of a random subgraph of the graph $G(n,r,
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 17
EP  - 19
VL  - 499
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_499_a3/
LA  - ru
ID  - DANMA_2021_499_a3
ER  - 
%0 Journal Article
%A V. S. Karas
%A P. A. Ogarok
%A A. M. Raigorodskii
%T Asymptotics of the independence number of a random subgraph of the graph $G(n,r,
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 17-19
%V 499
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_499_a3/
%G ru
%F DANMA_2021_499_a3
V. S. Karas; P. A. Ogarok; A. M. Raigorodskii. Asymptotics of the independence number of a random subgraph of the graph $G(n,r,
                  
                

[1] Kupavskii A., “Degree versions of theorems on intersecting families via stability”, J. Comb. Theory Ser. A, 168 (2019), 272–287 | DOI | MR | Zbl

[2] Pyaderkin M.M., “On the chromatic number of random subgraphs of a certain distance graph”, Discrete Applied Mathematics, 267 (2019), 209–214 | DOI | MR | Zbl

[3] Pyaderkin M.M., “O porogovoi veroyatnosti dlya ustoichivosti nezavisimykh mnozhestv v distantsionnom grafe”, Matem. Zametki, 106:2 (2019), 280–294 | DOI | MR | Zbl

[4] Derevyanko N.M., Kiselev S.G., “Chisla nezavisimosti sluchainykh podgrafov nekotorogo distantsionnogo grafa”, Probl. peredachi inform., 53:4 (2017), 3–15 | MR | Zbl

[5] Pyaderkin M.M., “Chisla nezavisimosti sluchainykh podgrafov distantsionnykh grafov”, Mateem. zametki, 99:4 (2016), 564–573 | DOI | MR | Zbl

[6] Pyaderkin M.M., “Chisla nezavisimosti sluchainykh podgrafov nekotorogo distantsionnogo grafa”, Matem. zametki, 99:2 (2016), 288–297 | DOI | MR | Zbl

[7] Devlin Pat, Kahn Jeff, “On “stability” in the Erdös-Ko-Rado Theorem”, SIAM J. Discrete Math., 30:2 (2016), 1283–1289 | DOI | MR | Zbl

[8] Das Shagnik, Tran Tuan, “Removal and Stability for Erdös-Ko-Rado Theorem”, SIAM J. Discrete Math., 30:2 (2016) | DOI | MR

[9] Kupavskii A., “On random subgraphs of Kneser and Schrijver graphs”, J. Combinatorial Theory Ser. A, 30:2 (2016) | MR

[10] Kiselev S., Supavskii A., “Rainbow matchings in k-partite hypergraphs”, Bulletin of the London Mathematical Society, 53:2 (2021), 360–369 | DOI | MR | Zbl

[11] Kupavskii A.B., Sagdeev A.A., “Teoriya Ramseya v prostranstve s chebyshevskoi metrikoi”, UMN, 75:5 (455) (2020), 191–192 | DOI | MR | Zbl

[12] Sagdeev A.A., “Ob odnoi teoreme Frankla-Uilsona”, Probl. peredachi inform., 55:4 (2019), 86–106 | DOI | MR | Zbl

[13] Sagdeev A. A., “On the Chromatic Numbers Corresponding to Exponentially Ramsey Sets”, J. Math. Sciences, 247:3 (2020), 488–497 | DOI | MR | Zbl

[14] Shabanov D.A., Shaikheeva T.M., “O predpisannom khromaticheskom chisle polnykh mnogodolnykh gipergrafov i kratnykh pokrytiyakh nezavisimymi mnozhestvami”, Matem. zametki, 107:3 (2020), 454–465 | DOI | MR | Zbl

[15] Semenov A., Shabanov D., “On the weak chromatic number of random hypergraphs”, Discrete Applied Mathematics, 276 (2020), 134–154 | DOI | MR | Zbl

[16] Akhmejanova M.B., Shabanov D.A., “Equitable colorings of hypergraphs with few edges”, Discrete Applied Mathematics, 276 (2020), 2–12 | DOI | MR | Zbl

[17] Pushnyakov F.A., Raigorodskii A.M., “Otsenka chisla reber v osobykh podgrafakh nekotorogo distantsionnogo grafa”, Matem. zametki, 107:2 (2020), 286–298 | DOI | MR | Zbl

[18] Pushnyakov F.A., Raigorodskii A.M., “Otsenka chisla reber v podgrafakh grafov Dzhonsona”, Doklady RAN. Matematika, informatika, protsessy upravleniya, 499 (2021), 40–43 | DOI | MR | Zbl