Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DANMA_2021_499_a2, author = {S. V. Zelik and A. A. Ilyin and A. G. Kostyanko}, title = {Sharp dimension estimates for the attractors of the regularized damped {Euler} system}, journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a}, pages = {13--16}, publisher = {mathdoc}, volume = {499}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DANMA_2021_499_a2/} }
TY - JOUR AU - S. V. Zelik AU - A. A. Ilyin AU - A. G. Kostyanko TI - Sharp dimension estimates for the attractors of the regularized damped Euler system JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2021 SP - 13 EP - 16 VL - 499 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2021_499_a2/ LA - ru ID - DANMA_2021_499_a2 ER -
%0 Journal Article %A S. V. Zelik %A A. A. Ilyin %A A. G. Kostyanko %T Sharp dimension estimates for the attractors of the regularized damped Euler system %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2021 %P 13-16 %V 499 %I mathdoc %U http://geodesic.mathdoc.fr/item/DANMA_2021_499_a2/ %G ru %F DANMA_2021_499_a2
S. V. Zelik; A. A. Ilyin; A. G. Kostyanko. Sharp dimension estimates for the attractors of the regularized damped Euler system. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 499 (2021), pp. 13-16. http://geodesic.mathdoc.fr/item/DANMA_2021_499_a2/
[1] Bardina J., Ferziger J., Reynolds W., “Improved subgrid scale models for large eddy simulation”, Proc. 13th AIAA Conference on Fluid and Plasma Dynamics, 1980
[2] Ilyin A.A., Miranville A., Titi E.S., “Small viscosity sharp estimates for the global attractor of the 2-D damped-driven Navier-Stokes equations”, Commun. Math. Sci., 2 (2004), 403–426 | DOI | MR | Zbl
[3] Cao Y., Lunasin E.M., Titi E.S., “Global well-posedness of the three-dimensional viscous and inviscid simplified Bardina turbulence models”, Commun. Math. Sci., 4 (2006), 823–848 | DOI | MR | Zbl
[4] Kalantarov V.K., Titi E.S., “Global attractors and determining modes for the 3D Navier-Stokes-Voight equations”, Chin. Ann. Math., 30B (2009), 697–714 | DOI | MR | Zbl
[5] Babin A.V., Vishik M.I., Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989, 296 pp. | MR
[6] Temam R., Infinite Dimensional Dynamical Systems in Mechanics and Physics, 2nd ed, Springer-Verlag, N.Y., 1997 | MR | Zbl
[7] Lieb E., Thirring W., “Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities”, Studies in Mathematical Physics, Essays in honor of Valentine Bargmann, Princeton University Press, Princeton NJ, 1976, 269–303
[8] Lieb E.H., “An ${{L}^{p}}$ bound for the Riesz and Bessel potentials of orthonormal functions”, J. Func. Anal., 51 (1983), 159–165 | DOI | MR | Zbl
[9] Ilin A.A., Laptev A.A., “Magnitnoe neravenstvo Liba-Tirringa dlya periodicheskikh funktsii”, UMN, 75:4 (2020), 89–90
[10] Ilyin A.A., Zelik S.V., “Sharp dimension estimates of the attractor of the damped 2D Euler-Bardina equations”, Partial Differential Equations, Spectral Theory, and Mathematical Physics, EMS Press, Berlin, 2021, 209–229 | DOI | MR | Zbl