Sharp dimension estimates for the attractors of the regularized damped Euler system
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 499 (2021), pp. 13-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

A regularized damped Euler system in two-dimensional and three-dimensional setting is considered. The existence of a global attractor is proved and explicit estimates of its fractal dimension are given. In the case of periodic boundary conditions both in two-dimensional and three-dimensional cases, it is proved that the obtained upper bounds are sharp in the limit $a\to0^+$, where $a$ is the parameter describing smoothing of the vector field in the nonlinear term.
Keywords: inviscid Euler–Bardina model, attractors, fractal dimension, Kolmogorov flows.
@article{DANMA_2021_499_a2,
     author = {S. V. Zelik and A. A. Ilyin and A. G. Kostyanko},
     title = {Sharp dimension estimates for the attractors of the regularized damped {Euler} system},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {13--16},
     publisher = {mathdoc},
     volume = {499},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_499_a2/}
}
TY  - JOUR
AU  - S. V. Zelik
AU  - A. A. Ilyin
AU  - A. G. Kostyanko
TI  - Sharp dimension estimates for the attractors of the regularized damped Euler system
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 13
EP  - 16
VL  - 499
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_499_a2/
LA  - ru
ID  - DANMA_2021_499_a2
ER  - 
%0 Journal Article
%A S. V. Zelik
%A A. A. Ilyin
%A A. G. Kostyanko
%T Sharp dimension estimates for the attractors of the regularized damped Euler system
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 13-16
%V 499
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_499_a2/
%G ru
%F DANMA_2021_499_a2
S. V. Zelik; A. A. Ilyin; A. G. Kostyanko. Sharp dimension estimates for the attractors of the regularized damped Euler system. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 499 (2021), pp. 13-16. http://geodesic.mathdoc.fr/item/DANMA_2021_499_a2/

[1] Bardina J., Ferziger J., Reynolds W., “Improved subgrid scale models for large eddy simulation”, Proc. 13th AIAA Conference on Fluid and Plasma Dynamics, 1980

[2] Ilyin A.A., Miranville A., Titi E.S., “Small viscosity sharp estimates for the global attractor of the 2-D damped-driven Navier-Stokes equations”, Commun. Math. Sci., 2 (2004), 403–426 | DOI | MR | Zbl

[3] Cao Y., Lunasin E.M., Titi E.S., “Global well-posedness of the three-dimensional viscous and inviscid simplified Bardina turbulence models”, Commun. Math. Sci., 4 (2006), 823–848 | DOI | MR | Zbl

[4] Kalantarov V.K., Titi E.S., “Global attractors and determining modes for the 3D Navier-Stokes-Voight equations”, Chin. Ann. Math., 30B (2009), 697–714 | DOI | MR | Zbl

[5] Babin A.V., Vishik M.I., Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989, 296 pp. | MR

[6] Temam R., Infinite Dimensional Dynamical Systems in Mechanics and Physics, 2nd ed, Springer-Verlag, N.Y., 1997 | MR | Zbl

[7] Lieb E., Thirring W., “Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities”, Studies in Mathematical Physics, Essays in honor of Valentine Bargmann, Princeton University Press, Princeton NJ, 1976, 269–303

[8] Lieb E.H., “An ${{L}^{p}}$ bound for the Riesz and Bessel potentials of orthonormal functions”, J. Func. Anal., 51 (1983), 159–165 | DOI | MR | Zbl

[9] Ilin A.A., Laptev A.A., “Magnitnoe neravenstvo Liba-Tirringa dlya periodicheskikh funktsii”, UMN, 75:4 (2020), 89–90

[10] Ilyin A.A., Zelik S.V., “Sharp dimension estimates of the attractor of the damped 2D Euler-Bardina equations”, Partial Differential Equations, Spectral Theory, and Mathematical Physics, EMS Press, Berlin, 2021, 209–229 | DOI | MR | Zbl