On one approach to the numerical solution of a coefficient inverse problem
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 499 (2021), pp. 58-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

An approach to solving the problem of determining the thermal conductivity coefficient of a substance based on the results of observing the dynamics of the temperature field is proposed. The effectiveness of the proposed approach is based on the application of the modern fast automatic differentiation methodology. The required thermal conductivity coefficient is determined from the solution of the formulated optimal control problem.
Keywords: coefficient inverse problems, nonlinear problems, heat equation, optimal control, numerical optimization methods, fast automatic differentiation.
@article{DANMA_2021_499_a12,
     author = {A. F. Albu and Yu. G. Evtushenko and V. I. Zubov},
     title = {On one approach to the numerical solution of a coefficient inverse problem},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {58--62},
     publisher = {mathdoc},
     volume = {499},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_499_a12/}
}
TY  - JOUR
AU  - A. F. Albu
AU  - Yu. G. Evtushenko
AU  - V. I. Zubov
TI  - On one approach to the numerical solution of a coefficient inverse problem
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 58
EP  - 62
VL  - 499
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_499_a12/
LA  - ru
ID  - DANMA_2021_499_a12
ER  - 
%0 Journal Article
%A A. F. Albu
%A Yu. G. Evtushenko
%A V. I. Zubov
%T On one approach to the numerical solution of a coefficient inverse problem
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 58-62
%V 499
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_499_a12/
%G ru
%F DANMA_2021_499_a12
A. F. Albu; Yu. G. Evtushenko; V. I. Zubov. On one approach to the numerical solution of a coefficient inverse problem. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 499 (2021), pp. 58-62. http://geodesic.mathdoc.fr/item/DANMA_2021_499_a12/

[1] Alifanov O.M., Obratnye zadachi teploobmena, Mashinostroenie, M., 1988, 279 pp.

[2] Kabanikhin S.I., Obratnye i nekorrektnye zadachi, Sib. nauch. izd-vo, Novosibirsk, 2009, 457 pp.

[3] Samarskii A.A., Vabischevich P.N., Vychislitelnaya teploperedacha, Editorial URSS, M., 2003, 784 pp.

[4] Ch. Gao, Y. Wang, “A general formulation of Peaceman and Rachford ADI method for the N-dimensional heat diffusion equation”, Int. Comm. Heat Mass Transfer, 23:6 (1996), 845–854 | DOI

[5] Albu A.F., Zubov V.I., “O vosstanovlenii koeffitsienta teploprovodnosti veschestva po temperaturnomu polyu”, ZhVMiMF, 58:10 (2018), 1642–1657

[6] Albu A.F., Evtushenko Yu.G., Zubov V.I., “O vybore raznostnykh skhem pri reshenii obratnykh koeffitsientnykh zadach”, ZhVMiMF, 60:10 (2020), 1643–1655 | Zbl