Reachable sets and integral funnels of differential inclusions depending on a parameter
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 499 (2021), pp. 49-53

Voir la notice de l'article provenant de la source Math-Net.Ru

A parameter-dependent control system is considered in Euclidean space $\mathbb{R}^n$. The dependence, on the parameter, of the reachable sets and integral funnels of the differential inclusion corresponding to the system is investigated. Estimates are obtained that characterize this dependence.
Keywords: control system, differential inclusion, reachable set, integral funnel, Hausdorff distance, approximation.
@article{DANMA_2021_499_a10,
     author = {V. N. Ushakov and A. A. Ershov},
     title = {Reachable sets and integral funnels of differential inclusions depending on a parameter},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {49--53},
     publisher = {mathdoc},
     volume = {499},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_499_a10/}
}
TY  - JOUR
AU  - V. N. Ushakov
AU  - A. A. Ershov
TI  - Reachable sets and integral funnels of differential inclusions depending on a parameter
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 49
EP  - 53
VL  - 499
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_499_a10/
LA  - ru
ID  - DANMA_2021_499_a10
ER  - 
%0 Journal Article
%A V. N. Ushakov
%A A. A. Ershov
%T Reachable sets and integral funnels of differential inclusions depending on a parameter
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 49-53
%V 499
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_499_a10/
%G ru
%F DANMA_2021_499_a10
V. N. Ushakov; A. A. Ershov. Reachable sets and integral funnels of differential inclusions depending on a parameter. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 499 (2021), pp. 49-53. http://geodesic.mathdoc.fr/item/DANMA_2021_499_a10/