Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DANMA_2021_499_a1, author = {Yu. G. Evtushenko and A. A. Tret'yakov}, title = {A new class of {Lyapunov} functions for stability analysis of singular dynamical systems. {Elements} of $p$-regularity theory}, journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a}, pages = {8--12}, publisher = {mathdoc}, volume = {499}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DANMA_2021_499_a1/} }
TY - JOUR AU - Yu. G. Evtushenko AU - A. A. Tret'yakov TI - A new class of Lyapunov functions for stability analysis of singular dynamical systems. Elements of $p$-regularity theory JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2021 SP - 8 EP - 12 VL - 499 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2021_499_a1/ LA - ru ID - DANMA_2021_499_a1 ER -
%0 Journal Article %A Yu. G. Evtushenko %A A. A. Tret'yakov %T A new class of Lyapunov functions for stability analysis of singular dynamical systems. Elements of $p$-regularity theory %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2021 %P 8-12 %V 499 %I mathdoc %U http://geodesic.mathdoc.fr/item/DANMA_2021_499_a1/ %G ru %F DANMA_2021_499_a1
Yu. G. Evtushenko; A. A. Tret'yakov. A new class of Lyapunov functions for stability analysis of singular dynamical systems. Elements of $p$-regularity theory. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 499 (2021), pp. 8-12. http://geodesic.mathdoc.fr/item/DANMA_2021_499_a1/
[1] Polyak B.T., Vvedenie v optimizatsiyu, Nauka, M., 1983, 384 pp. | MR
[2] Barbashin E.A., Krasovskii N.N., “Ob ustoichivosti dvizheniya v tselom”, DAN SSSR, 86:3 (1952), 453–456 | Zbl
[3] LaSalle J.P., Lefschetz S., Stability by Liapunov's direct method, Academic Press, 1961 | MR
[4] Chellaboina V.S., Haddad W.M., Nonlinear dynamical systems and control: A Lyapunov-based approach, Princeton University Press, 2008 | MR | Zbl
[5] Teschl G., Ordinary differential equations and dynamical systems, Graduate Studies in Mathematics, 140, American Mathematical Society, Providence, 2012 | DOI | MR | Zbl
[6] Polyak B.T., Khlebnikov M.V., Rapoport L.B., Matematicheskaya teoriya avtomaticheskogo upravleniya, LENAND, M., 2019
[7] Absil P.A., Kurdyka K., “On the stable equilibrium points of gradient systems”, Systems control letters, 55:7 (2006), 573–577 | DOI | MR | Zbl
[8] Gladilina R.I., “Metod funktsii Lyapunova v zadachakh ustoichivosti impulsnykh sistem”, Dinamicheskie sistemy, 2009, no. 26, 25–30 | Zbl
[9] Bibikov Yu.N., Pliss V.A., Trushina N.V., “Ob ustoichivosti nulevogo resheniya suschestvenno nelineinogo differentsialnogo uravneniya vtorogo poryadka v sluchae tsentra”, Vestn. Sankt-Peterburgskogo un-ta. Matematika. Mekhanika. Astronomiya, 4:3 (2017)
[10] Stamova I.M., Stamov G.T., “Stability analysis of differential equations with maximum”, Mathematica Slovaca, 63:6 (2013), 1291–1302 | DOI | MR | Zbl
[11] Ismayilova K.E., “Stability analysis for first-order nonlinear differential equations with three-point boundary conditions”, e-Journal of Analysis and Applied Mathematics, 2020:1 (2020), 40–52 | DOI
[12] Tret'yakov A., Marsden J.E., “Factor analysis of nonlinear mappings: p-regularity theory”, Communications on Pure Applied Analysis, 2:4 (2003), 425 | DOI | MR | Zbl
[13] Evtushenko Yu.G., Metody resheniya ekstremalnykh zadach i ikh primenenie v sistemakh optimizatsii, Nauka, M., 1982, 432 pp. | MR
[14] Brezhneva O.A., Tret'yakov A.A., “Implicit function theorems for nonregular mappings in Banach spaces. Exit from singularity”, Banach Spaces and Their Applications in Analysis, 2007, 285–302 | MR | Zbl