Critical values of finite Blaschke products
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 499 (2021), pp. 5-7.

Voir la notice de l'article provenant de la source Math-Net.Ru

For finite Blaschke products $B$ of degree $n\ge2$, $B(0)=0$, $B'(0)\ne0$ a sharp upper bound for the least critical values and a sharp lower bound for the greatest critical values of these products are established. These estimates depend only on $n$ and $|B'(0)|$.
Keywords: rational functions, Blaschke products, critical values, Riemann surfaces, symmetrization, dissymmetrization.
@article{DANMA_2021_499_a0,
     author = {V. N. Dubinin},
     title = {Critical values of finite {Blaschke} products},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {5--7},
     publisher = {mathdoc},
     volume = {499},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_499_a0/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - Critical values of finite Blaschke products
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 5
EP  - 7
VL  - 499
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_499_a0/
LA  - ru
ID  - DANMA_2021_499_a0
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T Critical values of finite Blaschke products
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 5-7
%V 499
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_499_a0/
%G ru
%F DANMA_2021_499_a0
V. N. Dubinin. Critical values of finite Blaschke products. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 499 (2021), pp. 5-7. http://geodesic.mathdoc.fr/item/DANMA_2021_499_a0/

[1] Sheil-Small T., Complex polynomials, Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl

[2] Mashreghi J., Fricain E. (eds.), Blaschke products and their applications, Fields Institute Communications, 65, Springer, N.Y., 2013 | DOI | MR | Zbl

[3] Ng T.W., Tsang C.Y., “Chebyshev-Blaschke products”, J. Comp. and Appl. Math., 277 (2015), 106–114 | DOI | MR | Zbl

[4] Ng T.W., Zhang Y., “Smale's mean value conjecture for finite Blaschke products”, J. Anal., 24 (2016), 331–345 | DOI | MR | Zbl

[5] Garcia S.R., Mashreghi J., Ross W.T., Finite Blaschke products and their connections, Springer, Cham, 2018 | MR | Zbl

[6] Dubinin V.N., “Neravenstva dlya kriticheskikh znachenii polinomov”, Matem. sb., 197:8 (2006), 63–72 | DOI | Zbl

[7] Smale S., “The fundamental theorem of algebra and complexity theory”, Bull. Amer. Math. Soc. (N.S.), 4:1 (1981), 1–36 | DOI | MR | Zbl

[8] Dubinin V.N., Condenser capacities and symmetrization in geometric function theory, Birkhauser/Springer, Basel, 2014 | MR | Zbl

[9] Akhiezer N.I., Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970 | MR

[10] Bogatyrev A.B., How many Zolotarev fractions are there?, Constructive approximation, 46:1 (2017), 37–45 | DOI | MR | Zbl

[11] Dubinin V.N., “Krugovaya simmetrizatsiya kondensatorov na rimanovykh poverkhnostyakh”, Matem. sb., 206:1 (2015), 69–96 | DOI | MR | Zbl