Classical solutions of hyperbolic equations with nonlocal potentials
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 498 (2021), pp. 37-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

A three-parameter family of global solutions for a two-dimensional hyperbolic differential-difference equation with a nonlocal potential is constructed. A theorem that the obtained solutions are classical is proved.
Keywords: hyperbolic equation, differential-difference equation, classical solution.
@article{DANMA_2021_498_a6,
     author = {N. V. Zaitseva},
     title = {Classical solutions of hyperbolic equations with nonlocal potentials},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {37--40},
     publisher = {mathdoc},
     volume = {498},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_498_a6/}
}
TY  - JOUR
AU  - N. V. Zaitseva
TI  - Classical solutions of hyperbolic equations with nonlocal potentials
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 37
EP  - 40
VL  - 498
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_498_a6/
LA  - ru
ID  - DANMA_2021_498_a6
ER  - 
%0 Journal Article
%A N. V. Zaitseva
%T Classical solutions of hyperbolic equations with nonlocal potentials
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 37-40
%V 498
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_498_a6/
%G ru
%F DANMA_2021_498_a6
N. V. Zaitseva. Classical solutions of hyperbolic equations with nonlocal potentials. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 498 (2021), pp. 37-40. http://geodesic.mathdoc.fr/item/DANMA_2021_498_a6/

[1] Bernoulli J., “Meditationes. Dechordis vibrantibis”, Commentaril Academiae Scientiarum Imperialis Petropolitanae, v. 3, 1728, 13–28

[2] Burkhardt H., “Entwicklungen nach oscillirenden Funktionen und Integration der Differentialgleichungen der mathematischen Physik”, Jahresber. Deutsch. Math., 10 (1908), 1–1804

[3] Pinney E., Ordinary Difference-Differential Equations, University of California press, Berkeley–Los Angeles, 1958, 262 pp. | MR | Zbl

[4] Skubachevskii A.L., Elliptic functional-differential equations and applications, Birkhauser, Basel–Boston–B., 1997, 294 pp. | MR | Zbl

[5] Skubachevskii A.L., “Kraevye zadachi dlya ellipticheskikh funktsionalno-differentsialnykh uravnenii i ikh prilozheniya”, Uspekhi matem. nauk, 71:5 (431) (2016), 3–112 | DOI | MR | Zbl

[6] Muravnik A.B., “Funktsionalno-differentsialnye parabolicheskie uravneniya: integralnye predstavleniya i kachestvennye svoistva reshenii zadachi Koshi”, Sovrem. mat. Fundam. napravl., 52, 2014, 3–143

[7] Muravnik A.B., “Asimptoticheskie svoistva reshenii zadachi Dirikhle v poluploskosti dlya nekotorykh differentsialno-raznostnykh ellipticheskikh uravnenii”, Matem. zametki, 100:4 (2016), 566–576 | DOI | Zbl

[8] Muravnik A., “On the half-plane Diriclet problem for differential-difference elliptic equations with several nonlocal terms”, Math. Model. Nat. Phenom., 12:6 (2017), 130–143 | DOI | MR | Zbl

[9] Muravnik A.B., “Asimptoticheskie svoistva reshenii dvumernykh differentsialno-raznostnykh ellipticheskikh zadach”, Sovrem. mat. fundam. napravl., 63, no. 4, 2017, 678–688

[10] Muravnik A.B., “Ellipticheskie zadachi s nelokalnym potentsialom, voznikayuschie v modelyakh nelineinoi optiki”, Matem. zametki, 105:5 (2019), 747–762 | DOI | MR | Zbl

[11] Muravnik A.B., “Half-plane differential-difference elliptic problems with general-kind nonlocal potentials”, Complex Variables and Elliptic Equations, 2020 | DOI | MR

[12] Vlasov V.V., Medvedev D.A., “Funktsionalno-differentsialnye uravneniya v prostranstvakh Soboleva i svyazannye s nimi voprosy spektralnoi teorii”, Sovrem. mat. fundam. napravl., 30, 2008, 3–173

[13] Zaitseva N.V., “O globalnykh klassicheskikh resheniyakh nekotorykh giperbolicheskikh differentsialno-raznostnykh uravnenii”, Doklady RAN. Matematika, informatika, protsessy upravleniya, 491 (2020), 44–46 | DOI | Zbl

[14] Zaitseva N.V., “Globalnye klassicheskie resheniya nekotorykh dvumernykh giperbolicheskikh differentsialno-raznostnykh uravnenii”, Differents. uravneniya, 56:6 (2020), 745–751 | DOI | Zbl

[15] Zaitseva N.V., “Classical solutions of hyperbolic differential-difference equations with several nonlocal terms”, Lobachevskii J. of Math., 42:1 (2021), 231–236 | DOI | MR | Zbl