On the Bellman function method for operators on martingales
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 498 (2021), pp. 27-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown how to apply the Bellman function method to general operators on martingales, i.e., to operators that are not necessarily martingale transforms. As examples of such operators, we consider the Haar transforms and an operator whose $L^p$-boundedness implies the Rubio de Francia inequality for the Walsh system. For the corresponding Bellman function, the Bellman induction is carried out and a Bellman candidate is constructed.
Keywords: Burkholder method, Gundy theorem, Walsh system, Rubio de Francia inequality, Haar transform.
@article{DANMA_2021_498_a4,
     author = {V. A. Borovitskii and N. N. Osipov and A. S. Tselishchev},
     title = {On the {Bellman} function method for operators on martingales},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {27--30},
     publisher = {mathdoc},
     volume = {498},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_498_a4/}
}
TY  - JOUR
AU  - V. A. Borovitskii
AU  - N. N. Osipov
AU  - A. S. Tselishchev
TI  - On the Bellman function method for operators on martingales
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 27
EP  - 30
VL  - 498
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_498_a4/
LA  - ru
ID  - DANMA_2021_498_a4
ER  - 
%0 Journal Article
%A V. A. Borovitskii
%A N. N. Osipov
%A A. S. Tselishchev
%T On the Bellman function method for operators on martingales
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 27-30
%V 498
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_498_a4/
%G ru
%F DANMA_2021_498_a4
V. A. Borovitskii; N. N. Osipov; A. S. Tselishchev. On the Bellman function method for operators on martingales. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 498 (2021), pp. 27-30. http://geodesic.mathdoc.fr/item/DANMA_2021_498_a4/

[1] Burkholder D.L., “Boundary value problems and sharp inequalities for martingale transforms”, Ann. Prob., 12:3 (1984), 647–702 | DOI | MR | Zbl

[2] Kashin B.S., Saakyan A.A., Ortogonalnye ryady, AFTs, M., 1999, 560 pp.

[3] Osipov N.N., “Littlewood-Paley-Rubio de Francia inequality for the Walsh system”, Algebra i analiz, 28:5 (2016), 236–246 | DOI | MR

[4] Rubio de Francia J.L., “A Littlewood-Paley inequality for arbitrary intervals”, Rev. Mat. Iberoam., 1:2 (1985), 1–14 | DOI | MR | Zbl

[5] Kislyakov S.V., “Martingalnye preobrazovaniya i ravnomerno skhodyaschiesya ortogonalnye ryady”, Zap. nauchn. sem. LOMI, 141, 1985, 18–38 | DOI | Zbl

[6] Gundy R.F., “A decomposition for $L^1$-bounded martingales”, Ann. Math. Stat, 39:1 (1968), 134–138 | DOI | MR | Zbl

[7] Nazarov F.L., Treil S.R., “Okhota na funktsiyu Bellmana: prilozheniya k otsenkam singulyarnykh integralnykh operatorov i k drugim klassicheskim zadacham garmonicheskogo analiza”, Algebra i analiz, 8:5 (1996), 32–162