Quantum graphs with small edges: holomorphy of resolvents
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 498 (2021), pp. 21-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a general scalar self-adjoint elliptic second order operator with general boundary conditions on an arbitrary metric graph containing a subgraph with edges of lengths proportional to a small parameter. We show that the resolvent of such operator is holomorphic in the small parameter and provide its representations by Taylor series. The coefficients of the series are found rather explicitly.
Keywords: graph, small edge, resolvent, holomorphy in a small parameter.
@article{DANMA_2021_498_a3,
     author = {D. I. Borisov},
     title = {Quantum graphs with small edges: holomorphy of resolvents},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {21--26},
     publisher = {mathdoc},
     volume = {498},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_498_a3/}
}
TY  - JOUR
AU  - D. I. Borisov
TI  - Quantum graphs with small edges: holomorphy of resolvents
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 21
EP  - 26
VL  - 498
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_498_a3/
LA  - ru
ID  - DANMA_2021_498_a3
ER  - 
%0 Journal Article
%A D. I. Borisov
%T Quantum graphs with small edges: holomorphy of resolvents
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 21-26
%V 498
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_498_a3/
%G ru
%F DANMA_2021_498_a3
D. I. Borisov. Quantum graphs with small edges: holomorphy of resolvents. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 498 (2021), pp. 21-26. http://geodesic.mathdoc.fr/item/DANMA_2021_498_a3/

[1] Berkolaiko G., Latushkin Yu., Sukhtaiev S., Adv. Math., 352 (2019), 632–669 | DOI | MR | Zbl

[2] Cacciapuoti C., Symmetry, 11:3 (2019), 359 | DOI | Zbl

[3] Cheon T., Exner P., Turek O., Ann. Phys., 325:3 (2010), 548–578 | DOI | MR | Zbl

[4] Komarov A.V., Penkin O.M., Pokornyi Yu.V., DAN, 390:2 (2003), 151–153 | MR

[5] Borisov D.I., Mukhametrakhimova A.I., Probl. matem. an., 2020, no. 106, 17–42

[6] Borisov D.I., Konyrkulzhaeva M.N., Ufimskii matem. zhurn., 11:2 (2019), 56–71 | MR | Zbl

[7] Ilin A.M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989, 336 pp. | MR