Quantum graphs with small edges: holomorphy of resolvents
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 498 (2021), pp. 21-26
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider a general scalar self-adjoint elliptic second order operator with general boundary conditions on an arbitrary metric graph containing a subgraph with edges of lengths proportional to a small parameter. We show that the resolvent of such operator is holomorphic in the small parameter and provide its representations by Taylor series. The coefficients of the series are found rather explicitly.
Keywords:
graph, small edge, resolvent, holomorphy in a small parameter.
@article{DANMA_2021_498_a3,
author = {D. I. Borisov},
title = {Quantum graphs with small edges: holomorphy of resolvents},
journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
pages = {21--26},
year = {2021},
volume = {498},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DANMA_2021_498_a3/}
}
TY - JOUR AU - D. I. Borisov TI - Quantum graphs with small edges: holomorphy of resolvents JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2021 SP - 21 EP - 26 VL - 498 UR - http://geodesic.mathdoc.fr/item/DANMA_2021_498_a3/ LA - ru ID - DANMA_2021_498_a3 ER -
D. I. Borisov. Quantum graphs with small edges: holomorphy of resolvents. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 498 (2021), pp. 21-26. http://geodesic.mathdoc.fr/item/DANMA_2021_498_a3/
[1] Berkolaiko G., Latushkin Yu., Sukhtaiev S., Adv. Math., 352 (2019), 632–669 | DOI | MR | Zbl
[2] Cacciapuoti C., Symmetry, 11:3 (2019), 359 | DOI | Zbl
[3] Cheon T., Exner P., Turek O., Ann. Phys., 325:3 (2010), 548–578 | DOI | MR | Zbl
[4] Komarov A.V., Penkin O.M., Pokornyi Yu.V., DAN, 390:2 (2003), 151–153 | MR
[5] Borisov D.I., Mukhametrakhimova A.I., Probl. matem. an., 2020, no. 106, 17–42
[6] Borisov D.I., Konyrkulzhaeva M.N., Ufimskii matem. zhurn., 11:2 (2019), 56–71 | MR | Zbl
[7] Ilin A.M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989, 336 pp. | MR