On nonuniqueness of probability solutions to the Cauchy problem for the Fokker--Planck--Kolmogorov equation
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 498 (2021), pp. 16-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we give a positive answer to the question about the possibility of existence of several probability solutions to the Fokker–Planck–Kolmogorov equation for all initial conditions: we construct the first example of an equation with a unit diffusion matrix and a smooth drift coefficient for which the Cauchy problem with every probability initial condition has an infinite-dimensiona1 simplex of probability solutions.
Keywords: Fokker–Planck–Kolmogorov equation, Cauchy problem, uniqueness of a probability solution.
@article{DANMA_2021_498_a2,
     author = {V. I. Bogachev and T. I. Krasovitskii and S. V. Shaposhnikov},
     title = {On nonuniqueness of probability solutions to the {Cauchy} problem for the {Fokker--Planck--Kolmogorov} equation},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {16--20},
     publisher = {mathdoc},
     volume = {498},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_498_a2/}
}
TY  - JOUR
AU  - V. I. Bogachev
AU  - T. I. Krasovitskii
AU  - S. V. Shaposhnikov
TI  - On nonuniqueness of probability solutions to the Cauchy problem for the Fokker--Planck--Kolmogorov equation
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 16
EP  - 20
VL  - 498
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_498_a2/
LA  - ru
ID  - DANMA_2021_498_a2
ER  - 
%0 Journal Article
%A V. I. Bogachev
%A T. I. Krasovitskii
%A S. V. Shaposhnikov
%T On nonuniqueness of probability solutions to the Cauchy problem for the Fokker--Planck--Kolmogorov equation
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 16-20
%V 498
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_498_a2/
%G ru
%F DANMA_2021_498_a2
V. I. Bogachev; T. I. Krasovitskii; S. V. Shaposhnikov. On nonuniqueness of probability solutions to the Cauchy problem for the Fokker--Planck--Kolmogorov equation. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 498 (2021), pp. 16-20. http://geodesic.mathdoc.fr/item/DANMA_2021_498_a2/

[1] Kolmogorov A.N., Uspekhi matem. nauk, 5 (1938), 5–41

[2] Kolmogorov A.N., Teoriya veroyatnostei i matematicheskaya statistika, Nauka, M., 1986, 149–161 | MR

[3] Bogachev V.I., Krylov N.V., Röckner M., Shaposhnikov S.V., Fokker-Planck-Kolmogorov equations, Amer. Math. Soc., Providence, Rhode Island, 2015, 480 pp. | MR | Zbl

[4] Feller V., Uspekhi matem. nauk, 5 (1938), 57–96

[5] Yosida K., Ark. Mat., 1 (1949), 71–75 | DOI | MR | Zbl

[6] Hille E., J. Analyse Math., 3 (1954), 81–196 | DOI | MR | Zbl

[7] Bogachev V.I., Krasovitskii T.I., Shaposhnikov S.V., Doklady RAN. Matematika, informatika, protsessy upravleniya, 495 (2020), 22–25 | DOI | Zbl

[8] Bogachev V.I., Krasovitskii T.I., Shaposhnikov S.V., Matem. sb. (to appear)

[9] Ladyzhenskaya O.A., Solonnikov V.A., Uraltseva N.N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967, 736 pp. | MR

[10] Krasovitskii T.I., DAN, 487:4 (2019), 361–364 | MR | Zbl

[11] Oleinik O.A., Radkevich E.V., Uravneniya vtorogo poryadka s neotritsatelnoi kharakteristicheskoi formoi, Izd-vo MGU, M., 2010, 359 pp.

[12] Fateeva G.M., Matem. sb., 76:4 (1968), 537–565 | MR | Zbl