Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DANMA_2021_498_a13, author = {N. Kuznetsov and M. Yu. Lobachev and M. V. Yuldashev and R. V. Yuldashev and S. I. Volskiy and D. A. Sorokin}, title = {On the generalized {Gardner} problem for phase-locked loops in electrical grids}, journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a}, pages = {71--75}, publisher = {mathdoc}, volume = {498}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DANMA_2021_498_a13/} }
TY - JOUR AU - N. Kuznetsov AU - M. Yu. Lobachev AU - M. V. Yuldashev AU - R. V. Yuldashev AU - S. I. Volskiy AU - D. A. Sorokin TI - On the generalized Gardner problem for phase-locked loops in electrical grids JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2021 SP - 71 EP - 75 VL - 498 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2021_498_a13/ LA - ru ID - DANMA_2021_498_a13 ER -
%0 Journal Article %A N. Kuznetsov %A M. Yu. Lobachev %A M. V. Yuldashev %A R. V. Yuldashev %A S. I. Volskiy %A D. A. Sorokin %T On the generalized Gardner problem for phase-locked loops in electrical grids %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2021 %P 71-75 %V 498 %I mathdoc %U http://geodesic.mathdoc.fr/item/DANMA_2021_498_a13/ %G ru %F DANMA_2021_498_a13
N. Kuznetsov; M. Yu. Lobachev; M. V. Yuldashev; R. V. Yuldashev; S. I. Volskiy; D. A. Sorokin. On the generalized Gardner problem for phase-locked loops in electrical grids. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 498 (2021), pp. 71-75. http://geodesic.mathdoc.fr/item/DANMA_2021_498_a13/
[1] Shakhgildyan V.V., Lyakhovkin A.A., Fazovaya avtopodstroika chastoty, Svyaz, M., 1966
[2] Viterbi A., Principles of coherent communications, McGraw-Hill, N.Y., 1966
[3] Best R.E., Phase-Locked Loops: Design, Simulation and Application, 6th ed., McGraw-Hill, N.Y., 2007 | MR
[4] Karimi-Ghartemani M., Enhanced phase-locked loop structures for power and energy applications, John Wiley Sons, 2014
[5] Golestan S., Guerrero J., Vasquez J., “Single-phase PLLs: A review of recent advances”, IEEE Transactions on Power Electronics, 32:12 (2017), 9013–9030 | DOI
[6] Burton T., Jenkins N., Sharpe D., Bossanyi E., Wind energy handbook, John Wiley Sons, 2011
[7] Kuznetsov N.V., Volskiy S.I., Sorokin D.A., Yuldashev M.V., Yuldashev R.V., “Power supply system for aircraft with electric traction”, 21st Intern. Sci. Conf. on Electric Power Engineering, 2020, 1–5 | MR
[8] Gardner F.M., Phaselock Techniques, 3rd edition, John Wiley Sons, N.Y., 2005
[9] Kuznetsov N.V., Lobachev M.Yu., Yuldashev M.V., Yuldashev R.V., “O probleme Gardnera dlya sistem upravleniya fazovoi avtopodstroikoi chastoty”, DAN, 489:6 (2019), 541–544 | MR | Zbl
[10] Bogolyubov N.N., Mitropolskii Yu.A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Gos. izd-vo fiz.-mat. lit-ry, M., 1958 | MR
[11] Matrosov V.M., Malikov A.I., “Razvitie idei A.M. Lyapunova za 100 let: 1892-1992”, Izvestiya vuzov. Matematika, 1993, no. 4, 3–47 | MR
[12] Vasilev S.N., Kozlov R.I., Ulyanov S.A., “Ustoichivost mnogorezhimnykh formatsii”, DAN, 455:3 (2014), 269–274
[13] Leonov G.A., Kuznetsov N.V., Nonlinear mathematical models of phase-locked loops. Stability and oscillations, Cambridge Scientific Publishers, Cambridge, 2014 | MR
[14] Kuznetsov N.V., Leonov G.A., Yuldashev M.V., Yulda-shev R.V., “Hidden attractors in dynamical models of phase-locked loop circuits: limitations of simulation in MATLAB and SPICE”, Communications in Nonlinear Science and Numerical Simulation, 51 (2017), 39–49 | DOI | MR
[15] Kuznetsov N.V., “Teoriya skrytykh kolebanii i ustoichivost sistem upravleniya”, Izvestiya RAN. Teoriya i sistemy upravleniya, 2020, no. 5, 5–27 | DOI | Zbl