On attractors of reaction–diffusion equations in a porous orthotropic medium
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 498 (2021), pp. 10-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

A system of reaction–diffusion equations in a perforated domain with rapidly oscillating terms in the equation and in the boundary conditions is studied. A nonlinear function in the equations may not satisfy the Lipschitz condition and, hence, the uniqueness theorem for the corresponding initial–boundary value problem for the considered system of reaction–diffusion equations may not be satisfied. It is proved that the trajectory attractors of this system weakly converge in the corresponding topology to the trajectory attractors of the homogenized reaction–diffusion system with a “strange term” (potential).
Keywords: attractors, homogenization, reaction–diffusion equation, nonlinear equations, weak convergence, perforated domain, rapidly oscillating terms strange term.
@article{DANMA_2021_498_a1,
     author = {K. A. Bekmaganbetov and V. V. Chepyzhov and G. A. Chechkin},
     title = {On attractors of reaction{\textendash}diffusion equations in a porous orthotropic medium},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {10--15},
     publisher = {mathdoc},
     volume = {498},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_498_a1/}
}
TY  - JOUR
AU  - K. A. Bekmaganbetov
AU  - V. V. Chepyzhov
AU  - G. A. Chechkin
TI  - On attractors of reaction–diffusion equations in a porous orthotropic medium
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 10
EP  - 15
VL  - 498
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_498_a1/
LA  - ru
ID  - DANMA_2021_498_a1
ER  - 
%0 Journal Article
%A K. A. Bekmaganbetov
%A V. V. Chepyzhov
%A G. A. Chechkin
%T On attractors of reaction–diffusion equations in a porous orthotropic medium
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 10-15
%V 498
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_498_a1/
%G ru
%F DANMA_2021_498_a1
K. A. Bekmaganbetov; V. V. Chepyzhov; G. A. Chechkin. On attractors of reaction–diffusion equations in a porous orthotropic medium. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 498 (2021), pp. 10-15. http://geodesic.mathdoc.fr/item/DANMA_2021_498_a1/

[1] Marchenko V.A., Khruslov E.Ya., Kraevye zadachi v oblastyakh s melkozernistoi granitsei, Naukova dumka, Kiev, 1974 | MR

[2] Oleinik O.A., Shamaev A.S., Yosifian G.A., Mathematical Problems in Elasticity and Homogenization, North-Holland, Amsterdam, 1992 | MR | Zbl

[3] Zhikov V.V., Kozlov S.M., Oleinik O.A., Usrednenie differentsialnykh operatorov, Fizmatlit, M., 1993

[4] Cioranescu D., Murat F., “Un terme étrange venu d'ailleurs I; II”, Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar, v. II, Research Notes in Mathematics, 60, eds. H. Berzis, J.L. Lions, Pitman, London, 1982, 98–138 ; v. III, Research Notes in Mathematics, 70, 154–178 | MR | Zbl

[5] Belyaev A.G., Pyatnitskii A.L., Chechkin G.A., “Usrednenie v perforirovannoi oblasti s ostsilliruyuschim tretim kraevym usloviem”, Matem. sb., 192:7 (2001), 3–20 | DOI | MR | Zbl

[6] Babin A.V., Vishik M.I., Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989 | MR

[7] Chepyzhov V.V., Vishik M.I., Attractors for equations of mathematical physics, Amer. Math. Soc., Providence (RI), 2002 | MR | Zbl

[8] Temam R., Infinite-dimensional dynamical systems in mechanics and physics, Applied Mathematics Series, 68, Springer-Verlag, New York (NY), 1988 | MR | Zbl

[9] Bekmaganbetov K.A., Chechkin G.A., Chepyzhov V.V., ““Strange Term” in Homogenization of Attractors of Reaction-Diffusion Equation in Perforated Domain”, Chaos, Solitons Fractals, 140 (2020) | MR | Zbl

[10] Vishik M.I., Chepyzhov V.V., “Usrednenie traektornykh attraktorov evolyutsionnykh uravnenii s bystro ostsilliruyuschimi chlenami”, Matematicheskii sbornik, 192:1 (2001), 13–50 | DOI | MR | Zbl