Representation of synthesizable differentiation-invariant subspaces of the Schwartz space
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 498 (2021), pp. 5-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a differentiation-invariant subspace $W$ in the Schwartz space $C^\infty(a;b)$ which admits weak spectral synthesis. We obtain the conditions under which W can be represented as the direct (algebraic and topological) sum of its residual subspace and the closed subspace spanned by the set of exponential monomials contained in $W$.
Keywords: spectral synthesis, invariant subspaces, slowly decreasing function, Beurling–Malliavin density.
@article{DANMA_2021_498_a0,
     author = {N. F. Abuzyarova},
     title = {Representation of synthesizable differentiation-invariant subspaces of the {Schwartz} space},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {5--9},
     publisher = {mathdoc},
     volume = {498},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_498_a0/}
}
TY  - JOUR
AU  - N. F. Abuzyarova
TI  - Representation of synthesizable differentiation-invariant subspaces of the Schwartz space
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 5
EP  - 9
VL  - 498
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_498_a0/
LA  - ru
ID  - DANMA_2021_498_a0
ER  - 
%0 Journal Article
%A N. F. Abuzyarova
%T Representation of synthesizable differentiation-invariant subspaces of the Schwartz space
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 5-9
%V 498
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_498_a0/
%G ru
%F DANMA_2021_498_a0
N. F. Abuzyarova. Representation of synthesizable differentiation-invariant subspaces of the Schwartz space. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 498 (2021), pp. 5-9. http://geodesic.mathdoc.fr/item/DANMA_2021_498_a0/

[1] Aleman A., Korenblum B., “Derivation-Invariant Subspaces of ${{C}^{\infty }}$”, Computation Methods and Function Theory, 8:2 (2008), 493–512 | DOI | MR | Zbl

[2] Abuzyarova N.F., “Spektralnyi sintez v prostranstve Shvartsa beskonechno differentsiruemykh funktsii”, DAN, 457:5 (2014), 510–513 | MR | Zbl

[3] Koosis P., Logarithmic Integral, v. II, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl

[4] Aleman A., Baranov A., Belov Yu., “Subspaces of ${{C}^{\infty }}$ invariant under the differentiation”, J. Functional Analysis, 268 (2015), 2421–2439 | DOI | MR | Zbl

[5] Ehrenpreis L., “Solution of some problems of division, IV”, Amer. J. Math., 57:1 (1960), 522–588 | DOI | MR

[6] Berenstein C.A., Taylor B.A., “A new look at interpolation theory for entire functions of one variable”, Adv. in Math., 33 (1980), 109–143 | DOI | MR

[7] Abuzyarova N.F., “On conditions of invertibility in the sense of Ehrenpreis in the Schwartz algebra”, Lobachevskii J. Math., 42:6 (2021), 1141–1153 | DOI | MR | Zbl

[8] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. 1, Teoriya raspredelenii i analiz Fure, Mir, M., 1986

[9] Dedonne Zh., Shvarts L., “Dvoistvennost v prostranstvakh (F) i (LF)”, Matematika. Sb. per. inostr. st., 2:2 (1958), 77–107

[10] Krasichkov-Ternovskii I.F., “Invariantnye podprostranstva analiticheskikh funktsii. Analiticheskoe prodolzhenie”, Izv. AN SSSR. Ser. matem., 37:4 (1973), 931–945

[11] Abuzyarova N.F., “Obratimye po Erenpraisu funktsii v algebre Shvartsa”, DAN, 484:1 (2019), 7–11 | MR | Zbl