Representation of synthesizable differentiation-invariant subspaces of the Schwartz space
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 498 (2021), pp. 5-9

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a differentiation-invariant subspace $W$ in the Schwartz space $C^\infty(a;b)$ which admits weak spectral synthesis. We obtain the conditions under which W can be represented as the direct (algebraic and topological) sum of its residual subspace and the closed subspace spanned by the set of exponential monomials contained in $W$.
Keywords: spectral synthesis, invariant subspaces, slowly decreasing function, Beurling–Malliavin density.
@article{DANMA_2021_498_a0,
     author = {N. F. Abuzyarova},
     title = {Representation of synthesizable differentiation-invariant subspaces of the {Schwartz} space},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {5--9},
     publisher = {mathdoc},
     volume = {498},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_498_a0/}
}
TY  - JOUR
AU  - N. F. Abuzyarova
TI  - Representation of synthesizable differentiation-invariant subspaces of the Schwartz space
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 5
EP  - 9
VL  - 498
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_498_a0/
LA  - ru
ID  - DANMA_2021_498_a0
ER  - 
%0 Journal Article
%A N. F. Abuzyarova
%T Representation of synthesizable differentiation-invariant subspaces of the Schwartz space
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 5-9
%V 498
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_498_a0/
%G ru
%F DANMA_2021_498_a0
N. F. Abuzyarova. Representation of synthesizable differentiation-invariant subspaces of the Schwartz space. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 498 (2021), pp. 5-9. http://geodesic.mathdoc.fr/item/DANMA_2021_498_a0/