Features of the statistical distribution of a quasi-harmonic signal phase
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 497 (2021), pp. 35-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

The statistical distribution of the phase of a quasi-harmonic signal has been theoretically investigated. An analytical expression for the probability density function of this distribution has been obtained for the first time, and the distribution has been shown to be a two-parameter one and to be determined by the following parameters: the signal-to-noise ratio and the deviation of the current phase value from the phase value in the initial noiseless signal. The dependence of the probability density function for the signal phase upon its parameters has been analyzed. This research is meaningful for solving tasks of high-precision phase measurements by means of statistical data processing methods.
Keywords: quasi-harmonic signal, Gaussian noise, probability density function.
@article{DANMA_2021_497_a6,
     author = {T. V. Yakovleva},
     title = {Features of the statistical distribution of a quasi-harmonic signal phase},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {35--37},
     publisher = {mathdoc},
     volume = {497},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_497_a6/}
}
TY  - JOUR
AU  - T. V. Yakovleva
TI  - Features of the statistical distribution of a quasi-harmonic signal phase
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 35
EP  - 37
VL  - 497
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_497_a6/
LA  - ru
ID  - DANMA_2021_497_a6
ER  - 
%0 Journal Article
%A T. V. Yakovleva
%T Features of the statistical distribution of a quasi-harmonic signal phase
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 35-37
%V 497
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_497_a6/
%G ru
%F DANMA_2021_497_a6
T. V. Yakovleva. Features of the statistical distribution of a quasi-harmonic signal phase. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 497 (2021), pp. 35-37. http://geodesic.mathdoc.fr/item/DANMA_2021_497_a6/

[1] J.G. Webster (ed.), Electrical Measurement, Signal Processing, and Displays, CRC Press, Boca Raton, 2004, 723 pp.

[2] Daryanoosh Sh., Slussarenko S., Berry D.W., Howard M. Wiseman, Geoff J. Pryde., “Experimental optical phase measurement approaching the exact Heisenberg limit”, Nature Communications, 9 (2018), 4606 | DOI

[3] Baoqiang Dua, Songlin Lia, et al., “High-precision frequency measurement system based on different frequency quantization phase comparison”, Measurement, 122, July (2018), 220–223 | DOI

[4] Yakovleva T.V., “Svoistvo ustoichivosti statisticheskogo raspredeleniya Raisa: teoriya i primenenie v zadachakh izmereniya fazovogo sdviga signalov”, Kompyuternye issledovaniya i modelirovanie, 12:3 (2020), 475–485

[5] Zeldovich B.Ya., Shkunov V.V., Yakovleva T.V., “Teoriya vosstanovleniya tolstosloinykh gologramm spekl-polei”, Kvantovaya elektronika, 10:8 (1983), 1581–1586 | MR

[6] Rytov S.M., Vvedenie v statisticheskuyu radiofiziku, v. 1, Sluchainye protsessy, Nauka, M., 1976, 494 pp.