Increased integrability of the gradient of the solution to the Zaremba problem for the Poisson equation
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 497 (2021), pp. 3-6.

Voir la notice de l'article provenant de la source Math-Net.Ru

An estimate is obtained for the increased integrability of the gradient of the solution to the Zaremba problem in a bounded plane domain with a Lipschitz boundary and rapidly alternating Dirichlet and Neumann boundary conditions, with an increased integrability exponent independent of the frequency of the boundary condition change.
Keywords: Meyers estimates, embedding theorems, rapidly changing type of boundary conditions.
@article{DANMA_2021_497_a0,
     author = {Yu. A. Alkhutov and G. A. Chechkin},
     title = {Increased integrability of the gradient of the solution to the {Zaremba} problem for the {Poisson} equation},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {3--6},
     publisher = {mathdoc},
     volume = {497},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_497_a0/}
}
TY  - JOUR
AU  - Yu. A. Alkhutov
AU  - G. A. Chechkin
TI  - Increased integrability of the gradient of the solution to the Zaremba problem for the Poisson equation
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 3
EP  - 6
VL  - 497
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_497_a0/
LA  - ru
ID  - DANMA_2021_497_a0
ER  - 
%0 Journal Article
%A Yu. A. Alkhutov
%A G. A. Chechkin
%T Increased integrability of the gradient of the solution to the Zaremba problem for the Poisson equation
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 3-6
%V 497
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_497_a0/
%G ru
%F DANMA_2021_497_a0
Yu. A. Alkhutov; G. A. Chechkin. Increased integrability of the gradient of the solution to the Zaremba problem for the Poisson equation. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 497 (2021), pp. 3-6. http://geodesic.mathdoc.fr/item/DANMA_2021_497_a0/

[1] Boyarskii B.V., “Obobschennye resheniya sistemy differentsialnykh uravnenii pervogo poryadka ellipticheskogo tipa s razryvnymi koeffitsientami”, Matem. sb., 43(85):4 (1957), 451–503

[2] Meyers N.G., “An ${{L}^{p}}$-estimate for the gradient of solutions of second order elliptic deivergence equations”, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 3-e série, 17:3 (1963), 189–206 | MR | Zbl

[3] Zhikov V.V., “On some Variational Problems”, Russian J. of Mathematical physics, 5:1 (1997), 105–116 | MR | Zbl

[4] Chechkin G.A., “Usrednenie kraevykh zadach s singulyarnym vozmuscheniem granichnykh uslovii”, Matem. sb., 184:6 (1993), 99–150 | Zbl

[5] Borisov D.I., “Asimptotiki i otsenki sobstvennykh elementov laplasiana s chastoi neperiodicheskoi smenoi granichnykh uslovii”, Izvestiya RAN. Seriya matem., 67:6 (2003), 23–70 | DOI | MR | Zbl

[6] Chechkina A.G., Sadovnichy V.A., “Degeneration of Steklov Type Boundary Conditions in One Spectral Homogenization Problem”, Eurasian Mathematical J., 6:3 (2015), 13–29 | MR | Zbl

[7] Nazarov A.I., Poborchii S.V., Neravenstvo Puankare i ego prilozheniya, Izd-vo SPbGU, SPb, 2012

[8] Mazya V.G., Prostranstva S.L. Soboleva, Izd-vo Leningr. un-ta, L., 1985 | MR

[9] Gehring F.W., “The $L^p$-integrability of the partial derivatives of a quasiconformal mapping”, Acta Math., 130 (1973), 265–277 | DOI | MR | Zbl

[10] Skrypnik I.V., Metody issledovaniya nelineinykh ellipticheskikh granichnykh zadach, Nauka, M., 1990 | MR