Increased integrability of the gradient of the solution to the Zaremba problem for the Poisson equation
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 497 (2021), pp. 3-6

Voir la notice de l'article provenant de la source Math-Net.Ru

An estimate is obtained for the increased integrability of the gradient of the solution to the Zaremba problem in a bounded plane domain with a Lipschitz boundary and rapidly alternating Dirichlet and Neumann boundary conditions, with an increased integrability exponent independent of the frequency of the boundary condition change.
Keywords: Meyers estimates, embedding theorems, rapidly changing type of boundary conditions.
@article{DANMA_2021_497_a0,
     author = {Yu. A. Alkhutov and G. A. Chechkin},
     title = {Increased integrability of the gradient of the solution to the {Zaremba} problem for the {Poisson} equation},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {3--6},
     publisher = {mathdoc},
     volume = {497},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_497_a0/}
}
TY  - JOUR
AU  - Yu. A. Alkhutov
AU  - G. A. Chechkin
TI  - Increased integrability of the gradient of the solution to the Zaremba problem for the Poisson equation
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 3
EP  - 6
VL  - 497
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_497_a0/
LA  - ru
ID  - DANMA_2021_497_a0
ER  - 
%0 Journal Article
%A Yu. A. Alkhutov
%A G. A. Chechkin
%T Increased integrability of the gradient of the solution to the Zaremba problem for the Poisson equation
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 3-6
%V 497
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_497_a0/
%G ru
%F DANMA_2021_497_a0
Yu. A. Alkhutov; G. A. Chechkin. Increased integrability of the gradient of the solution to the Zaremba problem for the Poisson equation. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 497 (2021), pp. 3-6. http://geodesic.mathdoc.fr/item/DANMA_2021_497_a0/