Asymptotics of eigenvalues in the Orr--Sommerfeld problem for low velocities of unperturbed flow
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 496 (2021), pp. 26-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

An asymptotic analysis of the eigenvalues and eigenfunctions in the Orr–Sommerfeld problem is carried out in the case when the velocity of the main plane-parallel shear flow in a layer of a Newtonian viscous fluid is low in a certain measure. The eigenvalues and corresponding eigenfunctions in the layer at rest are used as a zero approximation. For their perturbations, explicit analytical expressions are obtained in the linear approximation. It is shown that, FOR low velocities of the main shear flow, the perturbations of eigenvalues corresponding to monotonic decay near the rest in a viscous layer are such that, regardless of the velocity profile, the decay decrement remains the same, but an oscillatory component appears that is smaller in order by one than this decrement.
Keywords: Orr–Sommerfeld problem, eigenvalue, eigenfunction, flow, viscous fluid, stability, perturbation.
@article{DANMA_2021_496_a4,
     author = {D. V. Georgievskii},
     title = {Asymptotics of eigenvalues in the {Orr--Sommerfeld} problem for low velocities of unperturbed flow},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {26--29},
     publisher = {mathdoc},
     volume = {496},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_496_a4/}
}
TY  - JOUR
AU  - D. V. Georgievskii
TI  - Asymptotics of eigenvalues in the Orr--Sommerfeld problem for low velocities of unperturbed flow
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 26
EP  - 29
VL  - 496
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_496_a4/
LA  - ru
ID  - DANMA_2021_496_a4
ER  - 
%0 Journal Article
%A D. V. Georgievskii
%T Asymptotics of eigenvalues in the Orr--Sommerfeld problem for low velocities of unperturbed flow
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 26-29
%V 496
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_496_a4/
%G ru
%F DANMA_2021_496_a4
D. V. Georgievskii. Asymptotics of eigenvalues in the Orr--Sommerfeld problem for low velocities of unperturbed flow. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 496 (2021), pp. 26-29. http://geodesic.mathdoc.fr/item/DANMA_2021_496_a4/

[1] Orszag S.A., J. Fluid Mech., 50:4 (1971), 689–703 | DOI | Zbl

[2] Miklavčič M., Differential and Integral Equations, 4:4 (1991), 731–737 | MR | Zbl

[3] Dubrovskii V.V., Kadchenko S.I., Kravchenko V.F., Sadovnichii V.A., DAN, 378:4 (2001), 443–446 | MR | Zbl

[4] Stepin S.A., Matem. sb., 188 (1997), 129–146 | DOI | Zbl

[5] Tumanov S.N., Shkalikov A.A., Izv. RAN. Ser. matem., 66:4 (2002), 177–204 | DOI | MR | Zbl

[6] Kadchenko S.I., Torshina O.A., Ryazanova L.S., Sovremennye naukoemkie tekhnologii, 2018, no. 8, 89–94 | DOI

[7] Vedeneev V.V., Matematicheskaya teoriya ustoichivosti ploskoparallelnykh techenii i razvitie turbulentnosti, ID “Intellekt”, Dolgoprudnyi, 2016, 152 pp.

[8] Georgievskii D.V., Izbrannye zadachi mekhaniki sploshnoi sredy, LENAND, M., 2018, 560 pp.

[9] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Mir, M., 1971, 576 pp.