Continuous mean periodic extension of functions from an interval
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 496 (2021), pp. 21-25
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the following version of the mean periodic extension problem.
(i) Suppose that $T\in\mathscr{E}'(\mathbb{R}^n)$, $n\ge2$, and $E$ is a nonempty closed subset of $\mathbb{R}^n$. What conditions guarantee that, for a function $f\in C(E)$, there is a function
$F\in C(\mathbb{R}^n)$ coinciding with $f$ on $E$ such that $f*T=0$ in $\mathbb{R}^n$?
(ii) If such an extension F exists, then estimate the growth of F at infinity. We present a solution of this problem for a broad class of distributions $T$ in the case when $e$ is an interval in $\mathbb{R}^n$.
Keywords:
convolution equations, mean periodicity, spherical transform, quasi-analyticity.
@article{DANMA_2021_496_a3,
author = {V. V. Volchkov and Vit. V. Volchkov},
title = {Continuous mean periodic extension of functions from an interval},
journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
pages = {21--25},
publisher = {mathdoc},
volume = {496},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DANMA_2021_496_a3/}
}
TY - JOUR AU - V. V. Volchkov AU - Vit. V. Volchkov TI - Continuous mean periodic extension of functions from an interval JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2021 SP - 21 EP - 25 VL - 496 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2021_496_a3/ LA - ru ID - DANMA_2021_496_a3 ER -
%0 Journal Article %A V. V. Volchkov %A Vit. V. Volchkov %T Continuous mean periodic extension of functions from an interval %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2021 %P 21-25 %V 496 %I mathdoc %U http://geodesic.mathdoc.fr/item/DANMA_2021_496_a3/ %G ru %F DANMA_2021_496_a3
V. V. Volchkov; Vit. V. Volchkov. Continuous mean periodic extension of functions from an interval. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 496 (2021), pp. 21-25. http://geodesic.mathdoc.fr/item/DANMA_2021_496_a3/