Continuous mean periodic extension of functions from an interval
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 496 (2021), pp. 21-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the following version of the mean periodic extension problem. (i) Suppose that $T\in\mathscr{E}'(\mathbb{R}^n)$, $n\ge2$, and $E$ is a nonempty closed subset of $\mathbb{R}^n$. What conditions guarantee that, for a function $f\in C(E)$, there is a function $F\in C(\mathbb{R}^n)$ coinciding with $f$ on $E$ such that $f*T=0$ in $\mathbb{R}^n$? (ii) If such an extension F exists, then estimate the growth of F at infinity. We present a solution of this problem for a broad class of distributions $T$ in the case when $e$ is an interval in $\mathbb{R}^n$.
Keywords: convolution equations, mean periodicity, spherical transform, quasi-analyticity.
@article{DANMA_2021_496_a3,
     author = {V. V. Volchkov and Vit. V. Volchkov},
     title = {Continuous mean periodic extension of functions from an interval},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {21--25},
     publisher = {mathdoc},
     volume = {496},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_496_a3/}
}
TY  - JOUR
AU  - V. V. Volchkov
AU  - Vit. V. Volchkov
TI  - Continuous mean periodic extension of functions from an interval
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 21
EP  - 25
VL  - 496
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_496_a3/
LA  - ru
ID  - DANMA_2021_496_a3
ER  - 
%0 Journal Article
%A V. V. Volchkov
%A Vit. V. Volchkov
%T Continuous mean periodic extension of functions from an interval
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 21-25
%V 496
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_496_a3/
%G ru
%F DANMA_2021_496_a3
V. V. Volchkov; Vit. V. Volchkov. Continuous mean periodic extension of functions from an interval. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 496 (2021), pp. 21-25. http://geodesic.mathdoc.fr/item/DANMA_2021_496_a3/

[1] Leontev A.F., Posledovatelnosti polinomov iz eksponent, Nauka, M., 1980, 384 pp. | MR

[2] Sedletskii A.M., Uspekhi matem. nauk, 37(227):5 (1982), 51–95 | MR | Zbl

[3] Sedletskii A.M., Differen. uravneniya, 27:4 (1991), 703–711 | MR

[4] Volchkov V.V., Integral geometry and convolution equations, Kluwer, Dordrecht, 2003, 454 pp. | MR | Zbl

[5] Volchkov V.V., Volchkov Vit.V., Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group, Springer-Verlag, London, 2009, 672 pp. | MR | Zbl

[6] Volchkov V.V., Volchkov Vit.V., Offbeat Integral Geometry on Symmetric Spaces, Birkhäuser, Basel, 2013, 592 pp. | MR | Zbl

[7] Volchkov V.V., Volchkov Vit.V., Izv. RAN. Ser. matem., 75:3 (2011), 65–96 | DOI | MR | Zbl

[8] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. I, Mir, M., 1986, 462 pp.

[9] Zaraiskii D.A., Trudy IPMM, 31 (2017), 90–96 | Zbl

[10] Riekstynsh E.Ya., Asimptoticheskie razlozheniya integralov, v. I, Zinatne, Riga, 1974, 390 pp.