Sub-riemannian (2, 3, 5, 6)-structures
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 496 (2021), pp. 73-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe all Carnot algebras with growth vector (2, 3, 5, 6), their normal forms, an invariant that separates them, and a change of basis that transforms such an algebra into a normal form. For each normal form, Casimir functions and symplectic foliations on the Lie coalgebra are computed. An invariant and normal forms of left-invariant (2, 3, 5, 6)-distributions are described. A classification, up to isometries, of all left-invariant sub-Riemannian structures on (2, 3, 5, 6)-Carnot groups is obtained.
Keywords: sub-Riemannian geometry, Carnot algebras, Carnot groups, left-invariant sub-Riemannian structures.
@article{DANMA_2021_496_a15,
     author = {Yu. L. Sachkov and E. F. Sachkova},
     title = {Sub-riemannian (2, 3, 5, 6)-structures},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {73--78},
     publisher = {mathdoc},
     volume = {496},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_496_a15/}
}
TY  - JOUR
AU  - Yu. L. Sachkov
AU  - E. F. Sachkova
TI  - Sub-riemannian (2, 3, 5, 6)-structures
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 73
EP  - 78
VL  - 496
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_496_a15/
LA  - ru
ID  - DANMA_2021_496_a15
ER  - 
%0 Journal Article
%A Yu. L. Sachkov
%A E. F. Sachkova
%T Sub-riemannian (2, 3, 5, 6)-structures
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 73-78
%V 496
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_496_a15/
%G ru
%F DANMA_2021_496_a15
Yu. L. Sachkov; E. F. Sachkova. Sub-riemannian (2, 3, 5, 6)-structures. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 496 (2021), pp. 73-78. http://geodesic.mathdoc.fr/item/DANMA_2021_496_a15/

[1] Agrachev A., Barilari D., Boscain U., A Comprehensive Introduction to sub-Riemannian Geometry from Hamiltonian viewpoint, Cambridge University Press, Cambridge, 2019 | MR

[2] Vershik A.M., Gershkovich V.Ya., “Negolonomnye dinamicheskie sistemy. Geometriya raspredelenii i variatsionnye zadachi”, Itogi nauki i tekhniki: Sovremennye problemy matematiki. Fundamentalnye napravleniya, 16, VINITI, M., 1987, 5–85

[3] Berestovskii V.N., Zubareva I.A., “Formy sfer spetsialnykh negolonomnykh levoinvariantnykh vnutrennikh metrik na nekotorykh gruppakh Li”, Sib. matem. zhurn., 42:4 (2001), 731–748 | MR | Zbl

[4] Boscain U., Rossi F., “Invariant Carnot-Caratheodory metrics on $S^3$, $SO(3)$, $SL(2)$ and Lens Spaces”, SIAM Journal on Control and Optimization, 47 (2008), 1851–1878 | DOI | MR | Zbl

[5] Sachkov Yu.L., “Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane”, ESAIM: COCV, 17 (2011), 293–321 | DOI | MR | Zbl

[6] Butt Y.A., Sachkov Yu.L., Bhatti A.I., “Cut Locus and Optimal Synthesis in Sub-Riemannian Problem on the Lie Group $SH(2)$”, JDCS, 23 (2017), 155–195 | MR | Zbl

[7] Ardentov A.A., Sachkov Yu.L., “Maxwell Strata and Cut Locus in the Sub-Riemannian Problem on the Engel Group”, Regular and Chaotic Dynamics, 22:8 (2017), 909–936 | DOI | MR | Zbl

[8] Sachkov Yu.L., “Polnoe opisanie stratov Maksvella v obobschennoi zadache Didony”, Matem. sb., 197:6 (2006), 111–160 | DOI

[9] Sachkov Yu.L., Sachkova E.F., “Vyrozhdennye anormalnye traektorii v subrimanovoi zadache s vektorom rosta (2, 3, 5, 8)”, Diff. uravneniya, 53:3 (2017), 362–374 | DOI | Zbl

[10] Sachkov Yu.L., Sachkova E.F., “Struktura anormalnykh ekstremalei v subrimanovoi zadache s vektorom rosta (2, 3, 5, 8)”, Matem. sb., 211:10 (2020), 112–138 | DOI | MR | Zbl

[11] Lokutsievskii R.V., Sachkov Yu.L., “Ob integriruemosti po Liuvillyu subrimanovykh zadach na gruppakh Karno glubiny 4 i bolshe”, Matem. sb., 209:5 (2018), 74–119 | DOI | MR | Zbl

[12] Ming-Peng Gong, Classification of nilpotent Lie algebras of dimension 7 (over algebraically closed fields and $\mathbb{R}$), Thesis (Ph.D.). University of Waterloo (Canada), ProQuest LLC, Ann Arbor, MI, 1998 | MR

[13] Le Donne E., Tripaldi F., A cornucopia of Carnot groups in low dimensions, arXiv: 2008.12356

[14] Boizot N., Gauthier J.-P., “On the motion planning of the ball with a trailer”, Math. Control Relat. Fields, 3:3 (2013), 269–286 | DOI | MR | Zbl

[15] Kivioja V., Le Donne E., “Isometries of nilpotent metric groups”, J. de l'Ecole polytechnique - Mathématiques, 4 (2017), 473–482 | DOI | MR | Zbl