Sub-riemannian (2, 3, 5, 6)-structures
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 496 (2021), pp. 73-78

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe all Carnot algebras with growth vector (2, 3, 5, 6), their normal forms, an invariant that separates them, and a change of basis that transforms such an algebra into a normal form. For each normal form, Casimir functions and symplectic foliations on the Lie coalgebra are computed. An invariant and normal forms of left-invariant (2, 3, 5, 6)-distributions are described. A classification, up to isometries, of all left-invariant sub-Riemannian structures on (2, 3, 5, 6)-Carnot groups is obtained.
Keywords: sub-Riemannian geometry, Carnot algebras, Carnot groups, left-invariant sub-Riemannian structures.
@article{DANMA_2021_496_a15,
     author = {Yu. L. Sachkov and E. F. Sachkova},
     title = {Sub-riemannian (2, 3, 5, 6)-structures},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {73--78},
     publisher = {mathdoc},
     volume = {496},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_496_a15/}
}
TY  - JOUR
AU  - Yu. L. Sachkov
AU  - E. F. Sachkova
TI  - Sub-riemannian (2, 3, 5, 6)-structures
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 73
EP  - 78
VL  - 496
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_496_a15/
LA  - ru
ID  - DANMA_2021_496_a15
ER  - 
%0 Journal Article
%A Yu. L. Sachkov
%A E. F. Sachkova
%T Sub-riemannian (2, 3, 5, 6)-structures
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 73-78
%V 496
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_496_a15/
%G ru
%F DANMA_2021_496_a15
Yu. L. Sachkov; E. F. Sachkova. Sub-riemannian (2, 3, 5, 6)-structures. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 496 (2021), pp. 73-78. http://geodesic.mathdoc.fr/item/DANMA_2021_496_a15/