Isometries on noncommutative symmetric spaces
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 496 (2021), pp. 64-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathscr{M}$ be an atomless semifinite von Neumann algebra equipped with a faithful normal semifinite trace $\tau$ (or else, an atomic von Neumann algebra with all atoms having the same trace) acting on a separable Hilbert space $\mathscr{H}$. Let $E(\mathscr{M},\tau)$ be a separable symmetric space of $\tau$-measurable operators, whose norm is not proportional to the Hilbert norm $\|\cdot\|_2$ on $L_2(\mathscr{M},\tau)$. We provide a description of all bounded Hermitian operators on $E(\mathscr{M},\tau)$ and all surjective linear isometries of this space.
Keywords: surjective isometries, Hermitian operators, semifinite von Neumann algebra, symmetric spaces.
@article{DANMA_2021_496_a13,
     author = {F. A. Sukochev and Jinghao Huang},
     title = {Isometries on noncommutative symmetric spaces},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {64--67},
     publisher = {mathdoc},
     volume = {496},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_496_a13/}
}
TY  - JOUR
AU  - F. A. Sukochev
AU  - Jinghao Huang
TI  - Isometries on noncommutative symmetric spaces
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 64
EP  - 67
VL  - 496
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_496_a13/
LA  - ru
ID  - DANMA_2021_496_a13
ER  - 
%0 Journal Article
%A F. A. Sukochev
%A Jinghao Huang
%T Isometries on noncommutative symmetric spaces
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 64-67
%V 496
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_496_a13/
%G ru
%F DANMA_2021_496_a13
F. A. Sukochev; Jinghao Huang. Isometries on noncommutative symmetric spaces. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 496 (2021), pp. 64-67. http://geodesic.mathdoc.fr/item/DANMA_2021_496_a13/

[1] Fleming R., Jamison J., Isometries on Banach spaces: function spaces, Monographs and Surveys in Pure and Applied Mathematics, 129, Chapman Hall/CRC, Boca Raton (FL), 2003 | MR | Zbl

[2] Ovchinnikov V., “s-chisla izmerimykh operatorov”, Funkts. analiz i ego pril., 4:3 (1970), 78–85 | MR | Zbl

[3] Ovchinnikov V., “Simmetrichnye prostranstva izmerimykh operatorov”, DAN SSSR, 191 (1970), 769–771 | Zbl

[4] Zaidenberg M., “K izometricheskoi klassifikatsii simmetrichnykh prostranstv”, DAN SSSR, 234:2 (1977), 283–286 | MR | Zbl

[5] Sinclair A., “Jordan homomorphisms and derivations on semisimple Banach algebras”, Proc. Amer. Math. Soc., 24 (1970), 209–214 | MR | Zbl

[6] Sourour A., “Isometries of norm ideals of compact operators”, J. Funct. Anal., 43 (1981), 69–77 | DOI | MR | Zbl

[7] Sukochev F., “Isometries of symmetric operator spaces associated with AFD factors of type II and symmetric vector-valued spaces”, Integr. Equat. Oper. Th., 26 (1996), 102–124 | DOI | MR | Zbl

[8] Banakh S., Teoriya lineinykh operatsii, RKhD, M.-Izhevsk, 2001

[9] Kadison R., “Isometries of operator algebras”, Ann. of Math., 54 (1951), 325–338 | DOI | MR | Zbl

[10] Yeadon F., “Isometries of non-commutative $L^p$ spaces”, Math. Proc. Cambridge Philos. Soc., 90 (1981), 41–50 | DOI | MR | Zbl

[11] Chilin V., Medzhitov A., Sukochev F., “Isometries of non-commutative Lorentz spaces”, Math. Z., 200 (1989), 527–545 | DOI | MR | Zbl

[12] Braverman M., Semenov E., “Izometrii simmetrichnykh prostranstv”, DAN SSSR, 217 (1974), 257–259 | Zbl

[13] Medzhitov A., Sukochev F., “Izometrii nekommutativnykh prostranstv Lorentsa”, Dokl. AN UzSSR, 4 (1988), 11–12 | MR | Zbl

[14] J. Arazy, “Isomorphisms of unitary matrix spaces”, Banach Space Theory and Its Applications (Bucharest, 1981), Lecture Notes in Math., 991, Sprin-ger-Verlag, B.–N.Y., 1983, 1–6 | DOI | MR

[15] Abramovich Yu., Zaidenberg M., “A rearrangement invariant space isometric to $L_p$ coincides with ${{L}_{p}}$”, Interaction between functional analysis, harmonic analysis, and probability (Columbia, MO, 1994), Lecture Notes in Pure and Appl. Math., 175, Dekker, N.Y., 1996, 13–18 | MR | Zbl