Isometries on noncommutative symmetric spaces
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 496 (2021), pp. 64-67
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathscr{M}$ be an atomless semifinite von Neumann algebra equipped with a faithful normal semifinite trace $\tau$ (or else, an atomic von Neumann algebra with all atoms having the same trace) acting on a separable Hilbert space $\mathscr{H}$. Let $E(\mathscr{M},\tau)$ be a separable symmetric space of $\tau$-measurable operators, whose norm is not proportional to the Hilbert norm $\|\cdot\|_2$ on $L_2(\mathscr{M},\tau)$. We provide a description of all bounded Hermitian operators on $E(\mathscr{M},\tau)$ and all surjective linear isometries of this space.
Keywords:
surjective isometries, Hermitian operators, semifinite von Neumann algebra, symmetric spaces.
@article{DANMA_2021_496_a13,
author = {F. A. Sukochev and Jinghao Huang},
title = {Isometries on noncommutative symmetric spaces},
journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
pages = {64--67},
publisher = {mathdoc},
volume = {496},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DANMA_2021_496_a13/}
}
TY - JOUR AU - F. A. Sukochev AU - Jinghao Huang TI - Isometries on noncommutative symmetric spaces JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2021 SP - 64 EP - 67 VL - 496 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2021_496_a13/ LA - ru ID - DANMA_2021_496_a13 ER -
%0 Journal Article %A F. A. Sukochev %A Jinghao Huang %T Isometries on noncommutative symmetric spaces %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2021 %P 64-67 %V 496 %I mathdoc %U http://geodesic.mathdoc.fr/item/DANMA_2021_496_a13/ %G ru %F DANMA_2021_496_a13
F. A. Sukochev; Jinghao Huang. Isometries on noncommutative symmetric spaces. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 496 (2021), pp. 64-67. http://geodesic.mathdoc.fr/item/DANMA_2021_496_a13/