Stability analysis of artificial ice islands by methods of mathematical modeling
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 495 (2020), pp. 44-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The elastic effects on an artificial ice island produced by drill impacts and the pressure of structures located on the island are numerically modeled. The problem is solved numerically by applying the grid-characteristic method with interpolation on structured and unstructured meshes. The grid-characteristic method most accurately describes dynamic processes in exploration seismology problems, since it takes into account the nature of wave phenomena. The approach used makes it possible to construct correct computational algorithms at the boundaries and interfaces of the integration domain. Elastic wave propagation in the considered geological environment is studied, the stress distribution is simulated, and the stability of the ice island to fracture is analyzed using the von Mises criterion.
Keywords: mathematical modeling, grid-characteristic method, ice island, drill impact, static load.
@article{DANMA_2020_495_a9,
     author = {I. B. Petrov and M. V. Muratov and F. I. Sergeev},
     title = {Stability analysis of artificial ice islands by methods of mathematical modeling},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {44--47},
     year = {2020},
     volume = {495},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_495_a9/}
}
TY  - JOUR
AU  - I. B. Petrov
AU  - M. V. Muratov
AU  - F. I. Sergeev
TI  - Stability analysis of artificial ice islands by methods of mathematical modeling
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 44
EP  - 47
VL  - 495
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_495_a9/
LA  - ru
ID  - DANMA_2020_495_a9
ER  - 
%0 Journal Article
%A I. B. Petrov
%A M. V. Muratov
%A F. I. Sergeev
%T Stability analysis of artificial ice islands by methods of mathematical modeling
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 44-47
%V 495
%U http://geodesic.mathdoc.fr/item/DANMA_2020_495_a9/
%G ru
%F DANMA_2020_495_a9
I. B. Petrov; M. V. Muratov; F. I. Sergeev. Stability analysis of artificial ice islands by methods of mathematical modeling. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 495 (2020), pp. 44-47. http://geodesic.mathdoc.fr/item/DANMA_2020_495_a9/

[1] Crawford A., Crocker G., Mueller D., et al., “The canadian ice island drift, deterioration and detection (CI2D3) database”, J. of Glaciology, 64:245 (2018), 517–521 | DOI

[2] Petrov I.B., “Problems of Modeling Natural and Anthropogenic Processes in the Arctic Zone of the Russian Federation”, Mathematical Models and Computer Simulations, 11 (2019), 226–246 | DOI | MR

[3] Xunqiang Y., Jianbo L., Chenglin W., et al., “ANSYS implementation of damping solvent stepwise extraction method for nonlinear seismic analysis of large 3-D structures”, Soil Dynamics and Earthquake Engineering, 44 (2013), 139–152 | DOI | MR

[4] Nikolic Z., Zivaljic N., Smoljanovic H., et al., “Numerical modelling of reinforced concrete structures under seismic loading based on the finite element method with discrete inter element cracks”, Earthquake Engineering Structural Dynamics, 46:1 (2017), 159–178 | DOI

[5] Moczo P., Robertsson J.O., Eisner L., “The finite-difference time-domain method for modeling of seismic wave propagation”, Advances in Geophysics, 48 (2007), 421–516 | DOI

[6] Komatitsch D., Tromp J., “Introduction to the spectral element method for three-dimensional seismic wave propagation”, Geophysical J. Intern., 139:3 (1999), 806–822 | DOI

[7] Wilcox L.C., Stadler G., Burstedde C., et al., “A high-order discontinuous Galerkin method for wave propagation through coupled elastic-acoustic media”, J. Computational Physics, 229:24 (2010), 9373–9396 | DOI | MR | Zbl

[8] De Basabe J., Mrinal S., Wheeler M., “The interior penalty discontinuous Galerkin method for elastic wave propagation: grid dispersion”, Geophysical J. Intern., 175:1 (2008), 83–93 | DOI

[9] Favorskaya A.V., Breus A.V., Galitskii B.V., “Application of the grid-characteristic method to the seismic isolation model”, Smart Innovation, Systems and Technologies, 133 (2019), 167–181 | DOI

[10] Petrov I.B., Muratov M.V., “Application of the Grid-Characteristic Method to the Solution of Direct Problems in the Seismic Exploration of Fractured Formations (Review)”, Mathematical Models and Computer Simulations, 11 (2019), 924–939 | DOI | MR

[11] Grigorievih D.P., Khokhlov N.I., Petrov I.B., “Calculation of dynamic destruction in deformable bodies”, Matem. Mod., 29:4 (2017), 45–58 | MR

[12] Fedorenko R.P., “A relaxation method for solving elliptic difference equations”, USSR Computational Mathematics and Mathematical Physics, 1:4 (1962), 1092–1096 | DOI | MR