@article{DANMA_2020_495_a9,
author = {I. B. Petrov and M. V. Muratov and F. I. Sergeev},
title = {Stability analysis of artificial ice islands by methods of mathematical modeling},
journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
pages = {44--47},
year = {2020},
volume = {495},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DANMA_2020_495_a9/}
}
TY - JOUR AU - I. B. Petrov AU - M. V. Muratov AU - F. I. Sergeev TI - Stability analysis of artificial ice islands by methods of mathematical modeling JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2020 SP - 44 EP - 47 VL - 495 UR - http://geodesic.mathdoc.fr/item/DANMA_2020_495_a9/ LA - ru ID - DANMA_2020_495_a9 ER -
%0 Journal Article %A I. B. Petrov %A M. V. Muratov %A F. I. Sergeev %T Stability analysis of artificial ice islands by methods of mathematical modeling %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2020 %P 44-47 %V 495 %U http://geodesic.mathdoc.fr/item/DANMA_2020_495_a9/ %G ru %F DANMA_2020_495_a9
I. B. Petrov; M. V. Muratov; F. I. Sergeev. Stability analysis of artificial ice islands by methods of mathematical modeling. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 495 (2020), pp. 44-47. http://geodesic.mathdoc.fr/item/DANMA_2020_495_a9/
[1] Crawford A., Crocker G., Mueller D., et al., “The canadian ice island drift, deterioration and detection (CI2D3) database”, J. of Glaciology, 64:245 (2018), 517–521 | DOI
[2] Petrov I.B., “Problems of Modeling Natural and Anthropogenic Processes in the Arctic Zone of the Russian Federation”, Mathematical Models and Computer Simulations, 11 (2019), 226–246 | DOI | MR
[3] Xunqiang Y., Jianbo L., Chenglin W., et al., “ANSYS implementation of damping solvent stepwise extraction method for nonlinear seismic analysis of large 3-D structures”, Soil Dynamics and Earthquake Engineering, 44 (2013), 139–152 | DOI | MR
[4] Nikolic Z., Zivaljic N., Smoljanovic H., et al., “Numerical modelling of reinforced concrete structures under seismic loading based on the finite element method with discrete inter element cracks”, Earthquake Engineering Structural Dynamics, 46:1 (2017), 159–178 | DOI
[5] Moczo P., Robertsson J.O., Eisner L., “The finite-difference time-domain method for modeling of seismic wave propagation”, Advances in Geophysics, 48 (2007), 421–516 | DOI
[6] Komatitsch D., Tromp J., “Introduction to the spectral element method for three-dimensional seismic wave propagation”, Geophysical J. Intern., 139:3 (1999), 806–822 | DOI
[7] Wilcox L.C., Stadler G., Burstedde C., et al., “A high-order discontinuous Galerkin method for wave propagation through coupled elastic-acoustic media”, J. Computational Physics, 229:24 (2010), 9373–9396 | DOI | MR | Zbl
[8] De Basabe J., Mrinal S., Wheeler M., “The interior penalty discontinuous Galerkin method for elastic wave propagation: grid dispersion”, Geophysical J. Intern., 175:1 (2008), 83–93 | DOI
[9] Favorskaya A.V., Breus A.V., Galitskii B.V., “Application of the grid-characteristic method to the seismic isolation model”, Smart Innovation, Systems and Technologies, 133 (2019), 167–181 | DOI
[10] Petrov I.B., Muratov M.V., “Application of the Grid-Characteristic Method to the Solution of Direct Problems in the Seismic Exploration of Fractured Formations (Review)”, Mathematical Models and Computer Simulations, 11 (2019), 924–939 | DOI | MR
[11] Grigorievih D.P., Khokhlov N.I., Petrov I.B., “Calculation of dynamic destruction in deformable bodies”, Matem. Mod., 29:4 (2017), 45–58 | MR
[12] Fedorenko R.P., “A relaxation method for solving elliptic difference equations”, USSR Computational Mathematics and Mathematical Physics, 1:4 (1962), 1092–1096 | DOI | MR