On moment methods in Krylov subspaces
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 495 (2020), pp. 38-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Moment methods in Krylov subspaces for solving symmetric systems of linear algebraic equations (SLAEs) are considered. A family of iterative algorithms is proposed based on generalized Lanczos orthogonalization with an initial vector $v^0$ chosen regardless of the initial residual. By applying this approach, a series of SLAEs with the same matrix, but with different right-hand sides can be solved using a single set of basis vectors. Additionally, it is possible to implement generalized moment methods that reduce to block Krylov algorithms using a set of linearly independent guess vectors $v^0,\dots,v^0_m$. The performance of algorithm implementations is improved by reducing the number of matrix multiplications and applying efficient parallelization of vector operations. It is shown that the applicability of moment methods can be extended using preconditioning to various classes of algebraic systems: indefinite, incompatible, asymmetric, and complex, including non-Hermitian ones.
Keywords: moment method, Krylov subspace, parametric Lanczos orthogonalization, conjugate direction algorithms.
@article{DANMA_2020_495_a8,
     author = {V. P. Il'in},
     title = {On moment methods in {Krylov} subspaces},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {38--43},
     year = {2020},
     volume = {495},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_495_a8/}
}
TY  - JOUR
AU  - V. P. Il'in
TI  - On moment methods in Krylov subspaces
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 38
EP  - 43
VL  - 495
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_495_a8/
LA  - ru
ID  - DANMA_2020_495_a8
ER  - 
%0 Journal Article
%A V. P. Il'in
%T On moment methods in Krylov subspaces
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 38-43
%V 495
%U http://geodesic.mathdoc.fr/item/DANMA_2020_495_a8/
%G ru
%F DANMA_2020_495_a8
V. P. Il'in. On moment methods in Krylov subspaces. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 495 (2020), pp. 38-43. http://geodesic.mathdoc.fr/item/DANMA_2020_495_a8/

[1] Vorobev Yu.V., Metod momentov v prikladnoi matematike, Fizmatlit, M., 1958 | MR

[2] Akhiezer N.I., Klassicheskaya problema momentov, Fizmatlit, M., 1961

[3] Liesen J., Strakos Z., Krylov subspace methods. Principles and analysis, Oxford University Press, Oxford, 2013 | MR | Zbl

[4] Saad Y., Iterative methods for sparse linear systems, 2nd. ed., SIAM, 2003 | MR | Zbl

[5] Ilin V.P., Metody i tekhnologii konechnykh elementov, IVMiMG SO RAN, Novosibirsk, 2007

[6] Olshanskii M.A., Tyrtyshnikov E.E., Iterative methods for linear systems theory and applications, SIAM, Philadelphia, 2014 | MR | Zbl

[7] Craig E.G., “The N-step iteration procedure”, J. Math. Phis., 8 (1955), 64–73 | DOI | MR

[8] Choi S.-C.T., Paige C.C., Saunders M.A., MINRES-QLP: Krylov subspace method for indefinite or singular symmetric systems, SIAM, 27 Mar 2015, arXiv: 1003.4042 [math.NA] | MR

[9] Fridman V.M., “Metod minimalnykh iteratsii s minimalnymi oshibkami dlya sistem lineinykh algebraicheskikh uravnenii s simmetrichnoi matritsei”, ZhVMiMF, 2:2 (1962), 341–342 | Zbl

[10] Livne O.E., Golub J.H., “Scaling by binormalazation”, Numer. Algorithms, 35:1 (2004), 97–120 | DOI | MR

[11] Nikishin A.A., Eremin A.Y., “Variable block CG algorithms for solving large sparse symmetric positive definite linear systems on parallel computers”, SIAM J. Matrix Anal. Appl., 16 (1995), 1135–1153 | DOI | MR | Zbl

[12] Il'in V. P., “Multi-preconditioned domain decomposition methods in the Krylov subspaces”, LNCS, 10187, Springer, 2017, 95–107 | MR