@article{DANMA_2020_495_a8,
author = {V. P. Il'in},
title = {On moment methods in {Krylov} subspaces},
journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
pages = {38--43},
year = {2020},
volume = {495},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DANMA_2020_495_a8/}
}
V. P. Il'in. On moment methods in Krylov subspaces. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 495 (2020), pp. 38-43. http://geodesic.mathdoc.fr/item/DANMA_2020_495_a8/
[1] Vorobev Yu.V., Metod momentov v prikladnoi matematike, Fizmatlit, M., 1958 | MR
[2] Akhiezer N.I., Klassicheskaya problema momentov, Fizmatlit, M., 1961
[3] Liesen J., Strakos Z., Krylov subspace methods. Principles and analysis, Oxford University Press, Oxford, 2013 | MR | Zbl
[4] Saad Y., Iterative methods for sparse linear systems, 2nd. ed., SIAM, 2003 | MR | Zbl
[5] Ilin V.P., Metody i tekhnologii konechnykh elementov, IVMiMG SO RAN, Novosibirsk, 2007
[6] Olshanskii M.A., Tyrtyshnikov E.E., Iterative methods for linear systems theory and applications, SIAM, Philadelphia, 2014 | MR | Zbl
[7] Craig E.G., “The N-step iteration procedure”, J. Math. Phis., 8 (1955), 64–73 | DOI | MR
[8] Choi S.-C.T., Paige C.C., Saunders M.A., MINRES-QLP: Krylov subspace method for indefinite or singular symmetric systems, SIAM, 27 Mar 2015, arXiv: 1003.4042 [math.NA] | MR
[9] Fridman V.M., “Metod minimalnykh iteratsii s minimalnymi oshibkami dlya sistem lineinykh algebraicheskikh uravnenii s simmetrichnoi matritsei”, ZhVMiMF, 2:2 (1962), 341–342 | Zbl
[10] Livne O.E., Golub J.H., “Scaling by binormalazation”, Numer. Algorithms, 35:1 (2004), 97–120 | DOI | MR
[11] Nikishin A.A., Eremin A.Y., “Variable block CG algorithms for solving large sparse symmetric positive definite linear systems on parallel computers”, SIAM J. Matrix Anal. Appl., 16 (1995), 1135–1153 | DOI | MR | Zbl
[12] Il'in V. P., “Multi-preconditioned domain decomposition methods in the Krylov subspaces”, LNCS, 10187, Springer, 2017, 95–107 | MR