One problem of extremal functional interpolation and the Favard constants
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 495 (2020), pp. 34-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For an extremal functional interpolation problem first considered by Yu.N. Subbotin, the explicit form of the extremal interpolation constants is calculated in terms of the Favard constants in the spaces $L_p$, $p=1,3/2,2$. Simple efficient recurrence formulas are obtained to calculate the Favard constants, and formulas for calculating these constants in terms of the Euler numbers are also given.
Mots-clés : interpolation, Favard constants
Keywords: recurrence formulas, Euler numbers.
@article{DANMA_2020_495_a7,
     author = {Yu. S. Volkov},
     title = {One problem of extremal functional interpolation and the {Favard} constants},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {34--37},
     year = {2020},
     volume = {495},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_495_a7/}
}
TY  - JOUR
AU  - Yu. S. Volkov
TI  - One problem of extremal functional interpolation and the Favard constants
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 34
EP  - 37
VL  - 495
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_495_a7/
LA  - ru
ID  - DANMA_2020_495_a7
ER  - 
%0 Journal Article
%A Yu. S. Volkov
%T One problem of extremal functional interpolation and the Favard constants
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 34-37
%V 495
%U http://geodesic.mathdoc.fr/item/DANMA_2020_495_a7/
%G ru
%F DANMA_2020_495_a7
Yu. S. Volkov. One problem of extremal functional interpolation and the Favard constants. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 495 (2020), pp. 34-37. http://geodesic.mathdoc.fr/item/DANMA_2020_495_a7/

[1] Subbotin Yu.N., Novikov S.I., Shevaldin V.T., Tr. IMM UrO RAN, 24, no. 3, 2018, 200–225

[2] Subbotin Yu.N., Tr. MIAN SSSR, 78, 1965, 24–42 | Zbl

[3] Korneichuk N.P., Tochnye konstanty v teorii priblizheniya, Nauka, M., 1987 | MR

[4] Subbotin Yu.N., Tr. MIAN SSSR, 88 (1967), 30–60 | Zbl

[5] Dilcher K., NIST handbook of mathematical functions, U.S. Dept. Commerce, Washington, 2010 https://dlmf.nist.gov/24

[6] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. Gipergeometricheskaya funktsiya. Funktsii Lezhandra, Nauka, M., 1965 | MR

[7] Liu J., Pan H., Zhang Y., Integral Transforms Spec. Funct., 25:9 (2014), 680–685 | DOI | MR | Zbl

[8] Tikhomirov V.M., Nekotorye voprosy teorii priblizhenii, MGU, M., 1976

[9] Volkov Yu.S., Subbotin Yu.N., Tr. IMM UrO RAN, 20, no. 1, 2014, 52–67

[10] Gocheva-Ilieva S.G., Feschiev I.H., Abstr. Appl. Anal., 2013, 523618 | MR | Zbl