On the existence of focus singularities in one model of a Lagrange top with a vibrating suspension point
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 495 (2020), pp. 26-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a completely integrable Hamiltonian system with two degrees of freedom that describes the dynamics of a Lagrange top with a vibrating suspension point. The results of a stability analysis of equilibrium positions are clearly presented. It turns out that, in the case of a vibrating suspension point, both equilibrium positions can be unstable, which corresponds to the existence of focus singularities in the considered model.
Keywords: completely integrable Hamiltonian systems, focus singularities.
Mots-clés : Lagrange top
@article{DANMA_2020_495_a5,
     author = {A. V. Borisov and P. E. Ryabov and S. V. Sokolov},
     title = {On the existence of focus singularities in one model of a {Lagrange} top with a vibrating suspension point},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {26--30},
     year = {2020},
     volume = {495},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_495_a5/}
}
TY  - JOUR
AU  - A. V. Borisov
AU  - P. E. Ryabov
AU  - S. V. Sokolov
TI  - On the existence of focus singularities in one model of a Lagrange top with a vibrating suspension point
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 26
EP  - 30
VL  - 495
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_495_a5/
LA  - ru
ID  - DANMA_2020_495_a5
ER  - 
%0 Journal Article
%A A. V. Borisov
%A P. E. Ryabov
%A S. V. Sokolov
%T On the existence of focus singularities in one model of a Lagrange top with a vibrating suspension point
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 26-30
%V 495
%U http://geodesic.mathdoc.fr/item/DANMA_2020_495_a5/
%G ru
%F DANMA_2020_495_a5
A. V. Borisov; P. E. Ryabov; S. V. Sokolov. On the existence of focus singularities in one model of a Lagrange top with a vibrating suspension point. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 495 (2020), pp. 26-30. http://geodesic.mathdoc.fr/item/DANMA_2020_495_a5/

[1] Bolsinov A.V., Fomenko A.T., Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, v. 1, Izd. dom "Udmurtskii universitet", Izhevsk, 1999, 444 pp.; 447 с.

[2] Ryabov P.E., Oshemkov A.A., Sokolov S.V., “The Integrable Case of Adler - van Moerbeke. Discriminant Set and Bifurcation Diagram”, Regul. Chaotic Dyn., 21:5 (2016), 581–592 | DOI | MR | Zbl

[3] Markeev A.P., “K teorii dvizheniya tverdogo tela s vibriruyuschim podvesom”, DAN, 427:6 (2009), 771–775 | MR | Zbl

[4] Markeev A.P., “Ob uravneniyakh priblizhennoi teorii dvizheniya tverdogo tela s vibriruyuschei tochkoi podvesa”, PMM, 75:2 (2011), 193–203 | MR | Zbl

[5] Bolsinov A.V., Borisov A.V., Mamaev I.S., “Topology and Stability of Integrable Systems”, Russian Math. Surveys, 65:2 (2010), 259–318 | DOI | MR

[6] Markeev A.P., “O dvizhenii tyazhelogo dinamicheski simmetrichnogo tverdogo tela s vibriruyuschei tochkoi podvesa”, Izvestiya RAN. MTT, 47:4 (2012), 3–10 | MR

[7] San Vu Ngoc, “On semi-global invariants for focus-focus singularities”, Topology, 42:2 (2003), 365–380 | DOI | MR | Zbl