Densities of distributions of homogeneous functions of Gaussian random vectors
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 495 (2020), pp. 17-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain broad sufficient conditions for the boundedness of distribution densities of homogeneous functions on spaces with Gaussian measures. Estimates for the distribution densities of maxima of quadratic forms are obtained.
Keywords: Gaussian measure, homogeneous function, distribution density.
@article{DANMA_2020_495_a3,
     author = {V. I. Bogachev and E. D. Kosov and S. N. Popova},
     title = {Densities of distributions of homogeneous functions of {Gaussian} random vectors},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {17--21},
     year = {2020},
     volume = {495},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_495_a3/}
}
TY  - JOUR
AU  - V. I. Bogachev
AU  - E. D. Kosov
AU  - S. N. Popova
TI  - Densities of distributions of homogeneous functions of Gaussian random vectors
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 17
EP  - 21
VL  - 495
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_495_a3/
LA  - ru
ID  - DANMA_2020_495_a3
ER  - 
%0 Journal Article
%A V. I. Bogachev
%A E. D. Kosov
%A S. N. Popova
%T Densities of distributions of homogeneous functions of Gaussian random vectors
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 17-21
%V 495
%U http://geodesic.mathdoc.fr/item/DANMA_2020_495_a3/
%G ru
%F DANMA_2020_495_a3
V. I. Bogachev; E. D. Kosov; S. N. Popova. Densities of distributions of homogeneous functions of Gaussian random vectors. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 495 (2020), pp. 17-21. http://geodesic.mathdoc.fr/item/DANMA_2020_495_a3/

[1] Rhee Wan Soo, “On the distribution of the norm for a Gaussian measure”, Ann. Inst. H. Poincaré. Probab. et Statist., 20:3 (1984), 277–286 | MR | Zbl

[2] Rhee Wan Soo, Talagrand M., “Uniform convexity and the distribution of the norm for a Gaussian measure”, Probab. Theory Relat. Fields, 71:1 (1986), 59–68 | DOI | MR

[3] Davydov Yu.A., Lifshits M.A., Smorodina N.V., Local properties of distributions of stochastic functionals, Amer. Math. Soc., Providence, Rhode Island, 1998 | MR | Zbl

[4] Bogachev V.I., Gaussovskie mery, Nauka, M., 1997

[5] Bogachev V.I., Differentiable measures and the Malliavin calculus, Amer. Math. Soc., Providence, Rhode Island, 2010 | MR | Zbl

[6] Bogachev V.I., Smolyanov O.G., “Analiticheskie svoistva beskonechnomernykh raspredelenii”, Uspekhi matem. nauk, 45:3 (1990), 3–83 | MR | Zbl

[7] Smorodina N.V., “Asimpoticheskoe razlozhenie raspredeleniya odnorodnogo funktsionala ot strogo ustoichivogo vektora”, Teoriya veroyatn. i ee primen., 41:1 (1996), 133–163 | DOI | MR | Zbl

[8] Smorodina N.V., “Asimpoticheskoe razlozhenie raspredeleniya odnorodnogo funktsionala ot strogo ustoichivogo vektora. II”, Teoriya veroyatn. i ee primen., 44:2 (1999), 458–465 | DOI | MR | Zbl

[9] Nualart D., The Malliavin calculus and related topics, Springer-Verlag, B.–N.Y., 1995 | MR | Zbl

[10] Lifshits M.A., Gaussian random functions, Kluwer, Dordrecht, 1995 | MR | Zbl

[11] Götze F., Tikhomirov A.N., “Asymptotic distribution of quadratic forms”, Ann. Probab., 27:2 (1999), 1072–1098 | DOI | MR | Zbl

[12] Götze F., Tikhomirov A., “Asymptotic distribution of quadratic forms and applications”, J. Theor. Probab., 15:2 (2002), 423–475 | DOI | MR | Zbl

[13] Götze F., Zaitsev A.Yu., “Explicit rates of approximation in the CLT for quadratic forms”, Ann. Probab., 42:1 (2014), 354–397 | DOI | MR | Zbl

[14] Bogachev V.I., “Raspredeleniya mnogochlenov na mnogomernykh i beskonechnomernykh prostranstvakh s merami”, Uspekhi matem. nauk, 71:4 (2016), 107–154 | DOI | MR | Zbl

[15] Bogachev V.I., Kosov E.D., Zelenov G.I., “Fractional smoothness of distributions of polynomials and a fractional analog of the Hardy-Landau-Littlewood inequality”, Trans. Amer. Math. Soc., 370:6 (2018), 4401–4432 | DOI | MR | Zbl