The problem of trajectories avoiding a sparse terminal set
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 495 (2020), pp. 107-111 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of avoidance (evasion) in conflict-controlled processes in L.S. Pontryagin and E.F. Mishchenko’s statement is considered. The terminal set has a special discrete (sparse) structure. In contrast to other works, it consists of a countable number of points with distances not limited from below by a fixed positive constant. New sufficient conditions and an evasion method are obtained which make it possible to solve a number of avoiding trajectory problems for oscillatory systems, including the problem of swinging a generalized mathematical pendulum.
Keywords: avoiding, pursuer, evader, control, discrete sparse terminal set, pendulum.
Mots-clés : evasion
@article{DANMA_2020_495_a21,
     author = {L. P. Yugai},
     title = {The problem of trajectories avoiding a sparse terminal set},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {107--111},
     year = {2020},
     volume = {495},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_495_a21/}
}
TY  - JOUR
AU  - L. P. Yugai
TI  - The problem of trajectories avoiding a sparse terminal set
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 107
EP  - 111
VL  - 495
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_495_a21/
LA  - ru
ID  - DANMA_2020_495_a21
ER  - 
%0 Journal Article
%A L. P. Yugai
%T The problem of trajectories avoiding a sparse terminal set
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 107-111
%V 495
%U http://geodesic.mathdoc.fr/item/DANMA_2020_495_a21/
%G ru
%F DANMA_2020_495_a21
L. P. Yugai. The problem of trajectories avoiding a sparse terminal set. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 495 (2020), pp. 107-111. http://geodesic.mathdoc.fr/item/DANMA_2020_495_a21/

[1] Pontryagin L.S., Mischenko E.F., “Zadacha ubeganiya odnogo upravlyaemogo ob'ekta ot drugogo”, DAN SSSR, 189:4 (1969), 721–723 | Zbl

[2] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 496 pp. | MR

[3] Mischenko E.F., Nikolskii M.S., Satimov N., “Zadacha ukloneniya ot vstrechi v differentsialnykh igrakh mnogikh lits”, Tr. Matem. in-ta im. V.A. Steklova, 143, 1977, 105–128

[4] Chernousko F.L., Akulenko L.D., Sokolov B.N., Upravlenie kolebaniyami, Nauka, M., 1980, 484 pp.

[5] Pilipenko Yu.V., Chikrii A.A., “Kolebatelnye konfliktno upravlyaemye protsessy”, Prikl. matem. i mekhanika, 57:3 (1993), 3–14 | MR | Zbl

[6] Kurzhanskii A.B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 392 pp.

[7] Mischenko E.F., Satimov N.Yu., “Zadacha ob uklonenii ot vstrechi v differentsialnykh igrakh s nelineinymi upravleniyami”, Diff. uravneniya, 9:10 (1973), 1792–1797 | MR

[8] Yugai L.P., “K zadache o raskachke mayatnika”, Mater. 13-i mezhd. konf. “Ustoichivost i kolebaniya nelineinykh sistem upravleniya” (konferentsiya Pyatnitskogo) (Moskva, 1-3 iyunya, 2016), 429–432