Estimation of the growth of the degree of nonconvexity of reachable sets in terms of $\alpha$-sets
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 495 (2020), pp. 100-106 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the properties of $\alpha$-sets, which are a generalization of convex sets. The relationship between $\alpha$-sets and weakly convex sets is established in the sense of Vial and Efimov–Stechkin. An estimate of the growth over time of the nonconvexity measure $\alpha$ of reachable sets is obtained for one class of control systems in a two-dimensional state space.
Keywords: generalized convex set, weakly convex set, reachable set, control system.
Mots-clés : $\alpha$-set
@article{DANMA_2020_495_a20,
     author = {V. N. Ushakov and A. A. Ershov},
     title = {Estimation of the growth of the degree of nonconvexity of reachable sets in terms of $\alpha$-sets},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {100--106},
     year = {2020},
     volume = {495},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_495_a20/}
}
TY  - JOUR
AU  - V. N. Ushakov
AU  - A. A. Ershov
TI  - Estimation of the growth of the degree of nonconvexity of reachable sets in terms of $\alpha$-sets
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 100
EP  - 106
VL  - 495
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_495_a20/
LA  - ru
ID  - DANMA_2020_495_a20
ER  - 
%0 Journal Article
%A V. N. Ushakov
%A A. A. Ershov
%T Estimation of the growth of the degree of nonconvexity of reachable sets in terms of $\alpha$-sets
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 100-106
%V 495
%U http://geodesic.mathdoc.fr/item/DANMA_2020_495_a20/
%G ru
%F DANMA_2020_495_a20
V. N. Ushakov; A. A. Ershov. Estimation of the growth of the degree of nonconvexity of reachable sets in terms of $\alpha$-sets. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 495 (2020), pp. 100-106. http://geodesic.mathdoc.fr/item/DANMA_2020_495_a20/

[1] Uspenskii A.A., Ushakov V.N., Fomin A.N., $\alpha $-mnozhestva i ikh svoistva, Dep. v VINITI 02.04.2004, 543-V2004, IMM UrO RAN, Ekaterinburg, 2004, 62 pp.

[2] Ivanov G.E., Slabo vypuklye mnozhestva i funktsii: teoriya i prilozheniya, Fizmatlit, M., 2006, 352 pp.

[3] Zelinskii Yu.B., Vypuklost. Izbrannye glavy, Institut matematiki NAN Ukrainy, Kiev, 2012, 280 pp.

[4] Michael E., “Paraconvex sets”, Mathematica Scandinavica, 7:2 (1959), 312–315 | MR

[5] Ngai H.V., Penot J.-P., “Paraconvex functions and paraconvex sets”, Studia Mathematica, 184:1 (2008), 1–29 | DOI | MR | Zbl

[6] Semenov P.V., “Funktsionalno paravypuklye mnozhestva”, Matem. zametki, 54:6 (1993), 74–81 | Zbl

[7] Ivanov G.E., “Slabo vypuklye mnozhestva i ikh svoistva”, Matem. zametki, 79:1 (2006), 60–86 | DOI | MR | Zbl

[8] Ivanov G.E., Polovinkin E.S., “Vtoroi poryadok skhodimosti algoritma vychisleniya tseny lineinykh differentsialnykh igr”, DAN, 340:2 (1995), 151–154 | MR | Zbl

[9] Ivanov G.E., Golubev M.O., “Strong and weak convexity in nonlinear differential games”, IFAC PapersOnline, 51:32 (2018), 13–18 | DOI

[10] Ershov A.A., Kuvshinov O.A., “O svoistvakh peresecheniya $\alpha $-mnozhestv”, IMI UdGU, 55 (2020), 79–92 | Zbl

[11] Stechkin S.B., Efimov N.V., “Opornye svoistva mnozhestv v banakhovykh prostranstvakh i chebyshevskie mnozhestva”, DAN SSSR, 127:2 (1959), 254–257 | Zbl

[12] Kartan A., Differentsialnoe ischislenie. Differentsialnye formy, Mir, M., 1971, 392 pp.

[13] Lizorkin P.I., Kurs differentsialnykh i integralnykh uravnenii s dopolnitelnymi glavami analiza, Nauka, M., 1981, 384 pp.