Quantization of integrable systems with spectral parameter on a Riemann surface
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 495 (2020), pp. 91-94 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Given an integrable system defined by a Lax representation with spectral parameter on a Riemann surface, we construct a unitary projective representation of the corresponding Lie algebra of Hamiltonian vector fields by means of operators of covariant derivatives with respect to the Knizhnik–Zamolodchikov connection. It is a Dirac-type prequantization of the integrable system from a physical point of view. Simultaneously, it establishes a correspondence between integrable systems in question and conformal field theories. In the present paper, we focus on systems whose spectral curves possess a holomorphic involution. Examples are presented by Hitchin systems of the types $B_n$, $C_n$, $D_n$, and also of the type $A_n$ on hyperelliptic curves.
Keywords: integrable system, conformal field theory, Knizhnik–Zamolodchikov connection.
Mots-clés : quantization
@article{DANMA_2020_495_a18,
     author = {O. K. Sheinman},
     title = {Quantization of integrable systems with spectral parameter on a {Riemann} surface},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {91--94},
     year = {2020},
     volume = {495},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_495_a18/}
}
TY  - JOUR
AU  - O. K. Sheinman
TI  - Quantization of integrable systems with spectral parameter on a Riemann surface
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 91
EP  - 94
VL  - 495
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_495_a18/
LA  - ru
ID  - DANMA_2020_495_a18
ER  - 
%0 Journal Article
%A O. K. Sheinman
%T Quantization of integrable systems with spectral parameter on a Riemann surface
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 91-94
%V 495
%U http://geodesic.mathdoc.fr/item/DANMA_2020_495_a18/
%G ru
%F DANMA_2020_495_a18
O. K. Sheinman. Quantization of integrable systems with spectral parameter on a Riemann surface. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 495 (2020), pp. 91-94. http://geodesic.mathdoc.fr/item/DANMA_2020_495_a18/

[1] Friedan D., Shenker S., Nuclear Phys, B281 (1987), 509–545 | DOI

[2] Krichever I.M., Novikov S.P., Funkts. analiz i ego pril., 21:4 (1987), 47–61 | MR | Zbl

[3] Krichever I.M., Comm. Math. Phys., 229 (2002), 229–269 | DOI | MR | Zbl

[4] Krichever I.M., Phong D.H., Surveys in Differential Geometry, v. IV, 1998, 239–313 | DOI | Zbl

[5] Krichever I.M., Sheinman O.K., Funkts. analiz i ego pril., 41:4 (2007), 46–59 | DOI | MR | Zbl

[6] Schlichenmaier M., Krichever-Novikov type algebras. Theory and applications, De Gruyter Studies in Mathematics, 53, Walter de Gruyter Gmbh, B.–Boston, 2014, 360 pp. | MR

[7] Shlikhenmaier M., Sheinman O.K., UMN, 59:4 (358) (2004), 147–180 | DOI | MR

[8] Sheinman O.K., Proc. Workshop on Geometric Methods in Physics, Birkhauser, 2012

[9] Sheinman O.K., Current algebras on Riemann surfaces, De Gruyter Expositions in Mathematics, 58, Walter de Gruyter GmbH, B.–Boston, 2012, 150 pp. | MR

[10] Sheinman O.K., UMN, 71:1 (2016), 117–168 | DOI | MR | Zbl

[11] Sheinman O.K., Funkts. analiz i ego pril., 53:4 (2019), 63–78 | DOI | MR | Zbl

[12] Borisova P.I., Sheinman O.K., Tr. MIAN, 311, 2020 | Zbl