On the period length of a functional continued fraction over a number field
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 495 (2020), pp. 78-81 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the classical case, the connection between the periodicity of the continued fraction of $\sqrt{f}$ and the existence of a fundamental unit of the corresponding hyperelliptic field $\mathscr{L}=K(x)(\sqrt{f})$, where $K$ is a field of characteristic different from 2, has long been known. For the element $\sqrt{f}$, the period length of the continued fraction in $K((1/x))$ can be trivially estimated from above by the doubled degree of the fundamental unit. Much more complicated and interesting is the problem of estimating (from above) the period length of other elements of $\mathscr{L}$ that have a periodic continued fraction. Among these elements, those of the form $\sqrt{f}/x^s$, $s\in\mathbb{Z}$, play a key role. For such elements, the period length can be many times greater than the double degree of the fundamental unit. In this article, we find upper bounds for the period length of key elements of hyperelliptic fields $\mathscr{L}$ over number fields $K$. An example is found that demonstrates the sharpness of the proven upper bounds.
Keywords: continued fraction, period length, fundamental unit, hyperelliptic field, Eisenstein criterion.
Mots-clés : cyclotomic polynomials
@article{DANMA_2020_495_a16,
     author = {G. V. Fedorov},
     title = {On the period length of a functional continued fraction over a number field},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {78--81},
     year = {2020},
     volume = {495},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_495_a16/}
}
TY  - JOUR
AU  - G. V. Fedorov
TI  - On the period length of a functional continued fraction over a number field
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 78
EP  - 81
VL  - 495
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_495_a16/
LA  - ru
ID  - DANMA_2020_495_a16
ER  - 
%0 Journal Article
%A G. V. Fedorov
%T On the period length of a functional continued fraction over a number field
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 78-81
%V 495
%U http://geodesic.mathdoc.fr/item/DANMA_2020_495_a16/
%G ru
%F DANMA_2020_495_a16
G. V. Fedorov. On the period length of a functional continued fraction over a number field. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 495 (2020), pp. 78-81. http://geodesic.mathdoc.fr/item/DANMA_2020_495_a16/

[1] Adams W.W., Razar M.J., “Multiples of points on elliptic curves and continued fractions”, Proc. London Math. Soc., 41:3 (1980), 481–498 | DOI | MR | Zbl

[2] Platonov V.P., “Teoretiko-chislovye svoistva giperellipticheskikh polei i problema krucheniya v yakobianakh giperellipticheskikh krivykh nad polem ratsionalnykh chisel”, UMN, 69:1 (415) (2014), 3–38 | DOI | MR | Zbl

[3] Platonov V.P., Fedorov G.V., “O probleme periodichnosti nepreryvnykh drobei v giperellipticheskikh polyakh”, Matem. sb., 209:4 (2018), 54–94 | DOI | MR | Zbl

[4] Platonov V.P., Petrunin M.M., “Gruppy S-edinits i problema periodichnosti nepreryvnykh drobei v giperellipticheskikh polyakh”, Tr. MIAN, 302, 2018, 354–376 | DOI | Zbl

[5] Fedorov G.V., “Ob S-edinitsakh dlya normirovanii vtoroi stepeni v giperellipticheskikh polyakh”, Izvestiya RAN, 84:2 (2020), 197–242 | MR | Zbl

[6] Schinzel A., “On some problems of the arithmetical theory of continued fractions”, Acta Arith., 6 (1960/1961), 393–413 | DOI | MR

[7] Kubert D.S., “Universal bounds on the torsion of elliptic curves”, Proc. London Math. Soc. (3), 33:2 (1976), 193–237 | DOI | MR | Zbl

[8] Van Der Poorten A.J., Tran X.C., “Periodic continued fractions in elliptic function fields”, International Algorithmic Number Theory Symposium, Springer, Berlin–Heidelberg, 2002, 390–404 | MR | Zbl

[9] Scherr Z.L., Rational polynomial pell equations, Doct. Diss. The University of Michigan, 2013, 86 pp. | Zbl

[10] Sadek M., “Periodic continued fractions and elliptic curves over quadratic fields”, Journal of Symbolic Computation, 76 (2016), 200–218 | DOI | MR | Zbl

[11] Platonov V.P., Fedorov G.V., “O periodichnosti nepreryvnykh drobei v giperellpticheskikh polyakh”, DAN, 2017, no. 5, 540–544 | Zbl

[12] Platonov V.P., Fedorov G.V., “O probleme klassifikatsii periodicheskikh nepreryvnykh drobei v giperellipticheskikh polyakh”, UMN, 75:4 (2020), 211–212 | DOI | MR | Zbl

[13] Platonov V.P., Fedorov G.V., “Kriterii periodichnosti nepreryvnykh drobei klyuchevykh elementov giperellipticheskikh polei”, Chebyshevskii sbornik, 20:1 (2019), 246–258

[14] Fedorov G.V., “Ob ogranichennosti dlin periodov nepreryvnykh drobei klyuchevykh elementov giperellipticheskikh polei nad polem ratsionalnykh chisel”, Chebyshevskii sbornik, 20:4 (2019), 321–334

[15] Schmidt W.M., “On continued fractions and diophantine approximation in power series fields”, Acta Arith., 95:2 (2000), 139–166 | DOI | MR | Zbl