Mots-clés : cyclotomic polynomials
@article{DANMA_2020_495_a16,
author = {G. V. Fedorov},
title = {On the period length of a functional continued fraction over a number field},
journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
pages = {78--81},
year = {2020},
volume = {495},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DANMA_2020_495_a16/}
}
TY - JOUR AU - G. V. Fedorov TI - On the period length of a functional continued fraction over a number field JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2020 SP - 78 EP - 81 VL - 495 UR - http://geodesic.mathdoc.fr/item/DANMA_2020_495_a16/ LA - ru ID - DANMA_2020_495_a16 ER -
%0 Journal Article %A G. V. Fedorov %T On the period length of a functional continued fraction over a number field %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2020 %P 78-81 %V 495 %U http://geodesic.mathdoc.fr/item/DANMA_2020_495_a16/ %G ru %F DANMA_2020_495_a16
G. V. Fedorov. On the period length of a functional continued fraction over a number field. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 495 (2020), pp. 78-81. http://geodesic.mathdoc.fr/item/DANMA_2020_495_a16/
[1] Adams W.W., Razar M.J., “Multiples of points on elliptic curves and continued fractions”, Proc. London Math. Soc., 41:3 (1980), 481–498 | DOI | MR | Zbl
[2] Platonov V.P., “Teoretiko-chislovye svoistva giperellipticheskikh polei i problema krucheniya v yakobianakh giperellipticheskikh krivykh nad polem ratsionalnykh chisel”, UMN, 69:1 (415) (2014), 3–38 | DOI | MR | Zbl
[3] Platonov V.P., Fedorov G.V., “O probleme periodichnosti nepreryvnykh drobei v giperellipticheskikh polyakh”, Matem. sb., 209:4 (2018), 54–94 | DOI | MR | Zbl
[4] Platonov V.P., Petrunin M.M., “Gruppy S-edinits i problema periodichnosti nepreryvnykh drobei v giperellipticheskikh polyakh”, Tr. MIAN, 302, 2018, 354–376 | DOI | Zbl
[5] Fedorov G.V., “Ob S-edinitsakh dlya normirovanii vtoroi stepeni v giperellipticheskikh polyakh”, Izvestiya RAN, 84:2 (2020), 197–242 | MR | Zbl
[6] Schinzel A., “On some problems of the arithmetical theory of continued fractions”, Acta Arith., 6 (1960/1961), 393–413 | DOI | MR
[7] Kubert D.S., “Universal bounds on the torsion of elliptic curves”, Proc. London Math. Soc. (3), 33:2 (1976), 193–237 | DOI | MR | Zbl
[8] Van Der Poorten A.J., Tran X.C., “Periodic continued fractions in elliptic function fields”, International Algorithmic Number Theory Symposium, Springer, Berlin–Heidelberg, 2002, 390–404 | MR | Zbl
[9] Scherr Z.L., Rational polynomial pell equations, Doct. Diss. The University of Michigan, 2013, 86 pp. | Zbl
[10] Sadek M., “Periodic continued fractions and elliptic curves over quadratic fields”, Journal of Symbolic Computation, 76 (2016), 200–218 | DOI | MR | Zbl
[11] Platonov V.P., Fedorov G.V., “O periodichnosti nepreryvnykh drobei v giperellpticheskikh polyakh”, DAN, 2017, no. 5, 540–544 | Zbl
[12] Platonov V.P., Fedorov G.V., “O probleme klassifikatsii periodicheskikh nepreryvnykh drobei v giperellipticheskikh polyakh”, UMN, 75:4 (2020), 211–212 | DOI | MR | Zbl
[13] Platonov V.P., Fedorov G.V., “Kriterii periodichnosti nepreryvnykh drobei klyuchevykh elementov giperellipticheskikh polei”, Chebyshevskii sbornik, 20:1 (2019), 246–258
[14] Fedorov G.V., “Ob ogranichennosti dlin periodov nepreryvnykh drobei klyuchevykh elementov giperellipticheskikh polei nad polem ratsionalnykh chisel”, Chebyshevskii sbornik, 20:4 (2019), 321–334
[15] Schmidt W.M., “On continued fractions and diophantine approximation in power series fields”, Acta Arith., 95:2 (2000), 139–166 | DOI | MR | Zbl