On dividing sets into parts of smaller diameter
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 495 (2020), pp. 74-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An important generalization of Borsuk's classical problem of partitioning sets into parts of smaller diameter is studied. New upper and lower bounds for the Borsuk numbers are found.
Mots-clés : partition
Keywords: coloring, point sets in spaces, diameter graph.
@article{DANMA_2020_495_a15,
     author = {A. M. Raigorodskii},
     title = {On dividing sets into parts of smaller diameter},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {74--77},
     year = {2020},
     volume = {495},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_495_a15/}
}
TY  - JOUR
AU  - A. M. Raigorodskii
TI  - On dividing sets into parts of smaller diameter
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 74
EP  - 77
VL  - 495
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_495_a15/
LA  - ru
ID  - DANMA_2020_495_a15
ER  - 
%0 Journal Article
%A A. M. Raigorodskii
%T On dividing sets into parts of smaller diameter
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 74-77
%V 495
%U http://geodesic.mathdoc.fr/item/DANMA_2020_495_a15/
%G ru
%F DANMA_2020_495_a15
A. M. Raigorodskii. On dividing sets into parts of smaller diameter. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 495 (2020), pp. 74-77. http://geodesic.mathdoc.fr/item/DANMA_2020_495_a15/

[1] Raigorodskii A.M., “Cliques and cycles in distance graphs and graphs of diameters”, Discrete Geometry and Algebraic Combinatorics, Contemporary Mathematics, 625, AMS, 2014, 93–109 | DOI | MR | Zbl

[2] Bogolyubskii L.I., Raigorodskii A.M., “Zamechanie o nizhnikh otsenkakh khromaticheskikh chisel prostranstv maloi razmernosti s metrikami $l_1$ i $l_2$”, Matem. Zametki, 105:2 (2019), 187–213 | DOI | MR | Zbl

[3] Filimonov V.P., “O pokrytii mnozhestv v ${{\mathbb{R}}^{m}}$”, Matem. sb., 205:8 (2014), 95–138 | DOI | Zbl

[4] Rogers C.A., “Covering a sphere with spheres”, Mathematika, 10 (1963), 157–164 | DOI | MR | Zbl

[5] Bourgain J., Lindenstrauss J., “On covering a set in ${{\mathbb{R}}^{d}}$ by balls of the same diameter”, Geometric Aspects of Functional Analysis, Lecture Notes in Math., 1469, eds. J. Lindenstrauss, V. Milman, Springer-Verlag, Berlin, 1991, 138–144 | DOI | MR

[6] Ahlswede R., Khachatrian L.H., “The complete intersection theorem for systems of finite sets”, Europ. J. Combin., 18 (1997), 125–136 | DOI | MR | Zbl

[7] Raigorodskii A.M., Kharlamova A.A., “O sovokupnostyakh (-1, 0, 1)-vektorov s zapretami na velichiny poparnykh skalyarnykh proizvedenii”, Trudy po vektornomu i tenzornomu analizu, 29, Izd-vo MGU, M., 2013, 130–146

[8] Frankl P., Kupavskii A., “Erdős-Ko-Rado theorem for ${\text{\{ }}0, \pm 1{\text{\} }}$-vectors”, J. Comb. Theory Ser. A, 155 (2018), 157–179 | DOI | MR | Zbl

[9] Frankl P., Kupavskii A., “Incompatible intersection properties”, Combinatorica, 39:6 (2019), 1255–1266 | DOI | MR | Zbl

[10] Kupavskii A., “Degree versions of theorems on intersecting families via stability”, J. Comb. Theory Ser. A, 168 (2019), 272–287 | DOI | MR | Zbl

[11] Kupavskii A.B., Sagdeev A.A., “Teoriya Ramseya v prostranstve s chebyshevskoi metrikoi”, UMN, 75:5 (455) (2020), 191–192 | DOI | MR | Zbl

[12] Bobu A.V., Kupriyanov A.E., Raigorodskii A.M., “Ob odnom obobschenii knezerovskikh grafov”, Matem. zametki, 107:3 (2020), 351–365 | DOI | MR | Zbl

[13] Raigorodskii A.M., Sagdeev A.A., “On a Frankl-Wilson theorem and its geometric corollaries”, Acta Math. Univ. Comenianae, 88:3 (2019), 1029–1033 | MR

[14] Raigorodskii A.M., Shishunov E.D., “O chislakh nezavisimosti nekotorykh distantsionnykh grafov s vershinami v $\{-1, 0, 1\}^n$”, DAN, 485:3 (2019), 269–271 | Zbl

[15] Pushnyakov F.A., Raigorodskii A.M., “Otsenka chisla reber v osobykh podgrafakh nekotorogo distantsionnogo grafa”, Matem. zametki, 107:2 (2020), 286–298 | DOI | MR | Zbl