Mots-clés : laminar combustion
@article{DANMA_2020_495_a14,
author = {E. V. Radkevich and N. N. Yakovlev and O. A. Vasil'eva},
title = {Mathematical modeling of vibrational combustion},
journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
pages = {69--73},
year = {2020},
volume = {495},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DANMA_2020_495_a14/}
}
TY - JOUR AU - E. V. Radkevich AU - N. N. Yakovlev AU - O. A. Vasil'eva TI - Mathematical modeling of vibrational combustion JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2020 SP - 69 EP - 73 VL - 495 UR - http://geodesic.mathdoc.fr/item/DANMA_2020_495_a14/ LA - ru ID - DANMA_2020_495_a14 ER -
%0 Journal Article %A E. V. Radkevich %A N. N. Yakovlev %A O. A. Vasil'eva %T Mathematical modeling of vibrational combustion %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2020 %P 69-73 %V 495 %U http://geodesic.mathdoc.fr/item/DANMA_2020_495_a14/ %G ru %F DANMA_2020_495_a14
E. V. Radkevich; N. N. Yakovlev; O. A. Vasil'eva. Mathematical modeling of vibrational combustion. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 495 (2020), pp. 69-73. http://geodesic.mathdoc.fr/item/DANMA_2020_495_a14/
[1] Radkevich E.V., Yakovlev N.N., Vasileva O.A., Sidorov M.I., Stavrovskii M., O vozmozhnosti prilozheniya teorii Kana-Khillarda k matematicheskomu modelirovaniyu protsessa goreniya, Eko-Press, M., 2020, 188 pp.
[2] Radkevich E.V., Lukashev E.A., Yakovlev N.N., Vasileva O.A., Sidorov M.I., Vvedenie v obobschennuyu teoriyu neravnovesnykh fazovykh perekhodov i termodinamicheskii analiz zadach mekhaniki sploshnoi sredy, Izd-vo Mosk. un-ta, M., 2019, 342 pp.
[3] Radkevich E.V., Lukashev E.A., Vasileva O.A., “Gidrodinamicheskie neustoichivosti i neravnovesnye fazovye perekhody (v forme Kana-Khillarda)”, DAN, 486:5 (2019), 17–22
[4] Radkevich E.V., Vasileva O.A., Sidorov M.I., “Kristallizatsiya binarnykh splavov i neravnovesnye fazovye perekhody”, DAN, 489:6 (2019), 11–17
[5] Frolov S.M, Ivanov V.S., Deflagrative and Detonative Combust, eds. G.D. Roy, S.M. Frolov, 2010, 133 pp.
[6] Belyaev A.A., Basevich V.Ya., Frolov F.S., Frolov S.M., Basara B., Suffa M., Gorenie i vzryv, 3, ed. S.M. Frolov, Torus Press, M., 2010, 30
[7] Reitz R.D., “Mechanism of Atomization Processes in High Pressure Vaporizing Spray”, Atomization and Spray Technology, 3 (1987), 309–337
[8] Lee C.H., Reitz R.D., “An experimental study of the effect of gas density on the distortion and breakup mechanism of drops in high speed gas stream”, Int. J. of Multiphase Flow, 26 (2000), 229–244 | DOI | Zbl
[9] Ksandopulo G.I., Dubinin V.V., Khimiya gazofaznogo goreniya, Khimiya, M., 1987, 341 pp.
[10] Raushenbakh B.V., Vibratsionnoe gorenie, Gos. izd. fiz.-mat. lit., M., 1961, 500 pp. | MR
[11] Schetinkov E.S., Fizika goreniya gazov, Nauka, M., 1965, 739 pp.