On implementation of boolean functions by contact circuits with a constant uniform width
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 495 (2020), pp. 65-68 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce the concept of the uniform width of a contact circuit. For each Boolean function, we find the minimal possible value of the uniform width of a contact circuit implementing this function. We prove constructively that this value does not exceed 3. We also establish that, for almost all Boolean functions on $n$ variables, it equals 3.
Mots-clés : contact circuit
Keywords: Boolean function, uniform width.
@article{DANMA_2020_495_a13,
     author = {K. A. Popkov},
     title = {On implementation of boolean functions by contact circuits with a constant uniform width},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {65--68},
     year = {2020},
     volume = {495},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_495_a13/}
}
TY  - JOUR
AU  - K. A. Popkov
TI  - On implementation of boolean functions by contact circuits with a constant uniform width
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 65
EP  - 68
VL  - 495
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_495_a13/
LA  - ru
ID  - DANMA_2020_495_a13
ER  - 
%0 Journal Article
%A K. A. Popkov
%T On implementation of boolean functions by contact circuits with a constant uniform width
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 65-68
%V 495
%U http://geodesic.mathdoc.fr/item/DANMA_2020_495_a13/
%G ru
%F DANMA_2020_495_a13
K. A. Popkov. On implementation of boolean functions by contact circuits with a constant uniform width. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 495 (2020), pp. 65-68. http://geodesic.mathdoc.fr/item/DANMA_2020_495_a13/

[1] Lupanov O.B., Asimptoticheskie otsenki slozhnosti upravlyayuschikh sistem, Izd-vo Mosk. un-ta, M., 1984, 138 pp.

[2] Shannon C.E., “A symbolic analysis of relay and switching circuits”, Trans. AIEE, 57 (1938), 713–723

[3] Shannon C.E., “The synthesis of two-terminal switching circuits”, Bell Syst. Tech. J., 28:1 (1949), 59–98 | DOI | MR

[4] Korshunov A.D., “Slozhnost vychislenii bulevykh funktsii”, Uspekhi matem. nauk, 67:1 (403) (2012), 97–168 | DOI | MR | Zbl

[5] Madatyan Kh.A., “Sintez kontaktnykh skhem ogranichennoi shiriny”, Problemy kibernetiki, 14, Nauka, M., 1965, 301–307

[6] Karpova N.A., “O vychisleniyakh s ogranichennoi pamyatyu”, Matem. voprosy kibernetiki, 2, Nauka, M., 1989, 131–144 | MR

[7] Okolnishnikova E.A., “O slozhnosti vetvyaschikhsya programm”, Matem. voprosy kibernetiki, 10, Fizmatlit, M., 2001, 69–82

[8] Lozhkin S.A., Lektsii po osnovam kibernetiki, uchebnoe posobie dlya studentov, Izdatelskii otdel f-ta VMiK MGU, M., 2004, 251 pp.

[9] Konovodov V.A., “O sinteze skhem ogranichennoi shiriny”, Materialy VIII molodezhnoi nauchnoi shkoly po diskretnoi matematike i ee prilozheniyam (Moskva, 24-29 oktyabrya, 2011 g.), M., 2011, 37–41

[10] Kravtsov S.S., “O realizatsii funktsii algebry logiki v odnom klasse skhem iz funktsionalnykh i kommutatsionnykh elementov”, Problemy kibernetiki, 19, Nauka, M., 1967, 285–292

[11] Popkov K.A., “O diagnosticheskikh testakh razmykaniya dlya kontaktnykh skhem”, Diskretnaya matematika, 31:2 (2019), 124–143 | DOI

[12] Popkov K.A., “Korotkie edinichnye proveryayuschie testy dlya kontaktnykh skhem pri obryvakh i zamykaniyakh kontaktov”, Intellektualnye sistemy. Teoriya i prilozheniya, 23:3 (2019), 97–130

[13] Popkov K.A., “Korotkie testy zamykaniya dlya kontaktnykh skhem”, Matem. zametki, 107:4 (2020), 591–603 | DOI | MR | Zbl

[14] Redkin N.P., Nadezhnost i diagnostika skhem, Izd-vo Mosk. un-ta, M., 1992, 192 pp.