Optimal control and “strange” term arising from homogenization of the Poisson equation in the perforated domain with the Robin-type boundary condition in the critical case
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 495 (2020), pp. 59-64 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The present paper is devoted to the study of the asymptotic behavior of the optimal control for the boundary value problem in an $\varepsilon$-periodically perforated domain with linear Robin-type boundary condition, when the period of the structure tends to zero, and the problem parameters, diameter of perforations and adsorption coefficient, take critical values.
Keywords: homogenization, perforated domain, critical case, optimal control
Mots-clés : “strange” term.
@article{DANMA_2020_495_a12,
     author = {A. V. Podolskii and T. A. Shaposhnikova},
     title = {Optimal control and {\textquotedblleft}strange{\textquotedblright} term arising from homogenization of the {Poisson} equation in the perforated domain with the {Robin-type} boundary condition in the critical case},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {59--64},
     year = {2020},
     volume = {495},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_495_a12/}
}
TY  - JOUR
AU  - A. V. Podolskii
AU  - T. A. Shaposhnikova
TI  - Optimal control and “strange” term arising from homogenization of the Poisson equation in the perforated domain with the Robin-type boundary condition in the critical case
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 59
EP  - 64
VL  - 495
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_495_a12/
LA  - ru
ID  - DANMA_2020_495_a12
ER  - 
%0 Journal Article
%A A. V. Podolskii
%A T. A. Shaposhnikova
%T Optimal control and “strange” term arising from homogenization of the Poisson equation in the perforated domain with the Robin-type boundary condition in the critical case
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 59-64
%V 495
%U http://geodesic.mathdoc.fr/item/DANMA_2020_495_a12/
%G ru
%F DANMA_2020_495_a12
A. V. Podolskii; T. A. Shaposhnikova. Optimal control and “strange” term arising from homogenization of the Poisson equation in the perforated domain with the Robin-type boundary condition in the critical case. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 495 (2020), pp. 59-64. http://geodesic.mathdoc.fr/item/DANMA_2020_495_a12/

[1] Saint Jean Paulin J., Zoubairi H., “Optimal control and “strange term” for a Stokes problem in perforated domains”, Portugaliae Mathematica. Nova Serie, 59:2 (2002) | MR | Zbl

[2] Zubova M.N., Shaposhnikova T.A., DAN, 475:3 (2017), 247–250 | MR | Zbl

[3] Zubova M.N., Shaposhnikova T.A., Differents. uravneniya, 46:10 (2010), 128–136

[4] Lions J.L., Controle optimal de systemes gouvernes par des equations aux derivees partielles, Etudes Mathematiques Collection dirigee par P. Lelong, Dunod Gauthier-Villars, Paris, 1968 | MR | Zbl

[5] Díaz J.I., “Controllability and obstruction for some nonlinear parabolic problems in climatology”, En el libro Modelado de Sistemes en Oceanografia, Climatologia y Ciencias Medio-Ambientales, eds. C. Pares, A. Valle, Universidad de Malaga, 1994, 43–55

[6] Rajesh M., “Convergence of some energies for the Dirichlet problem in perforated domains”, Rendiconti di Matematica. Ser. VII, 21, Roma, 2001, 259–274 | MR | Zbl

[7] Strömqvist M.H., “Optimal Control of the obstacle Problem in a Perforated Domain”, Appl. Math. Optim., 66 (2012), 239–255 | DOI | MR | Zbl