Mots-clés : “strange” term.
@article{DANMA_2020_495_a12,
author = {A. V. Podolskii and T. A. Shaposhnikova},
title = {Optimal control and {\textquotedblleft}strange{\textquotedblright} term arising from homogenization of the {Poisson} equation in the perforated domain with the {Robin-type} boundary condition in the critical case},
journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
pages = {59--64},
year = {2020},
volume = {495},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DANMA_2020_495_a12/}
}
TY - JOUR AU - A. V. Podolskii AU - T. A. Shaposhnikova TI - Optimal control and “strange” term arising from homogenization of the Poisson equation in the perforated domain with the Robin-type boundary condition in the critical case JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2020 SP - 59 EP - 64 VL - 495 UR - http://geodesic.mathdoc.fr/item/DANMA_2020_495_a12/ LA - ru ID - DANMA_2020_495_a12 ER -
%0 Journal Article %A A. V. Podolskii %A T. A. Shaposhnikova %T Optimal control and “strange” term arising from homogenization of the Poisson equation in the perforated domain with the Robin-type boundary condition in the critical case %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2020 %P 59-64 %V 495 %U http://geodesic.mathdoc.fr/item/DANMA_2020_495_a12/ %G ru %F DANMA_2020_495_a12
A. V. Podolskii; T. A. Shaposhnikova. Optimal control and “strange” term arising from homogenization of the Poisson equation in the perforated domain with the Robin-type boundary condition in the critical case. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 495 (2020), pp. 59-64. http://geodesic.mathdoc.fr/item/DANMA_2020_495_a12/
[1] Saint Jean Paulin J., Zoubairi H., “Optimal control and “strange term” for a Stokes problem in perforated domains”, Portugaliae Mathematica. Nova Serie, 59:2 (2002) | MR | Zbl
[2] Zubova M.N., Shaposhnikova T.A., DAN, 475:3 (2017), 247–250 | MR | Zbl
[3] Zubova M.N., Shaposhnikova T.A., Differents. uravneniya, 46:10 (2010), 128–136
[4] Lions J.L., Controle optimal de systemes gouvernes par des equations aux derivees partielles, Etudes Mathematiques Collection dirigee par P. Lelong, Dunod Gauthier-Villars, Paris, 1968 | MR | Zbl
[5] Díaz J.I., “Controllability and obstruction for some nonlinear parabolic problems in climatology”, En el libro Modelado de Sistemes en Oceanografia, Climatologia y Ciencias Medio-Ambientales, eds. C. Pares, A. Valle, Universidad de Malaga, 1994, 43–55
[6] Rajesh M., “Convergence of some energies for the Dirichlet problem in perforated domains”, Rendiconti di Matematica. Ser. VII, 21, Roma, 2001, 259–274 | MR | Zbl
[7] Strömqvist M.H., “Optimal Control of the obstacle Problem in a Perforated Domain”, Appl. Math. Optim., 66 (2012), 239–255 | DOI | MR | Zbl