Concentrations problem for solutions to compressible Navier–Stokes equations
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 495 (2020), pp. 55-58 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A three-dimensional initial-boundary value problem for the isentropic equations of the dynamics of a viscous gas is considered. The concentration phenomenon is that, for adiabatic exponent values $\gamma\le3/2$, the finite energy can be concentrated on arbitrarily small sets. It is proved that, in the critical case $\gamma=3/2$, the norm of the density of kinetic energy in the logarithmic Orlicz space is bounded by a constant that depends only on the initial and boundary data. This eliminates the possibility of the concentration phenomenon.
Keywords: Navier–Stokes equations, concentration phenomenon.
Mots-clés : viscous gas
@article{DANMA_2020_495_a11,
     author = {P. I. Plotnikov},
     title = {Concentrations problem for solutions to compressible {Navier{\textendash}Stokes} equations},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {55--58},
     year = {2020},
     volume = {495},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_495_a11/}
}
TY  - JOUR
AU  - P. I. Plotnikov
TI  - Concentrations problem for solutions to compressible Navier–Stokes equations
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 55
EP  - 58
VL  - 495
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_495_a11/
LA  - ru
ID  - DANMA_2020_495_a11
ER  - 
%0 Journal Article
%A P. I. Plotnikov
%T Concentrations problem for solutions to compressible Navier–Stokes equations
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 55-58
%V 495
%U http://geodesic.mathdoc.fr/item/DANMA_2020_495_a11/
%G ru
%F DANMA_2020_495_a11
P. I. Plotnikov. Concentrations problem for solutions to compressible Navier–Stokes equations. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 495 (2020), pp. 55-58. http://geodesic.mathdoc.fr/item/DANMA_2020_495_a11/

[1] Lions P.L., Mathematical topics in fluid dynamics, v. 2, Compressible models, Clarendon Press, Oxford, 1998 | MR

[2] Feireisl E., Novotný A., Petzeltová H., J. of Mathematical Fluid Mechanics, 3:3 (2001), 358–392 | DOI | MR | Zbl

[3] Novotný A., Straškraba I., Introduction to the mathematical theory of compressible flow, Oxford Lecture Series in Mathematics and its Applications, 27, Oxford University Press, Oxford, 2004 | MR | Zbl

[4] Lions P.L., “On some challenging problems in nonlinear partial differential equations”, Mathematics: Frontiers and Perspectives, ed. V. Arnold, AMS Providence, RI, 2000, 121–135 | MR | Zbl

[5] Plotnikov P.I., Weigant W., SIAM J. Math. Anal., 47 (2015), 626–652 | DOI | MR

[6] Xianpeng Hu, Archive for Rational Mechanics and Analysis, 234 (2019), 375–416 | DOI | MR | Zbl