On the finiteness of the number of expansions into a continued fraction of $\sqrt f$ for cubic polynomials over algebraic number fields
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 495 (2020), pp. 48-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain a complete description of cubic polynomials f over algebraic number fields $\mathbb K$ of degree 3 over $\mathbb Q$ for which the continued fraction expansion of $\sqrt f$ in the field of formal power series $\mathbb K((x))$ is periodic. We also prove a finiteness theorem for cubic polynomials $f\in K[x]$ with a periodic expansion of $\sqrt f$ for extensions of $\mathbb Q$ of degree at most 6. Additionally, we give a complete description of such polynomials $f$ over an arbitrary field corresponding to elliptic fields with a torsion point of order $N\ge30$.
Keywords: elliptic field, $S$-units, continued fractions, periodicity, modular curves
Mots-clés : torsion point.
@article{DANMA_2020_495_a10,
     author = {V. P. Platonov and M. M. Petrunin},
     title = {On the finiteness of the number of expansions into a continued fraction of $\sqrt f$ for cubic polynomials over algebraic number fields},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {48--54},
     year = {2020},
     volume = {495},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_495_a10/}
}
TY  - JOUR
AU  - V. P. Platonov
AU  - M. M. Petrunin
TI  - On the finiteness of the number of expansions into a continued fraction of $\sqrt f$ for cubic polynomials over algebraic number fields
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 48
EP  - 54
VL  - 495
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_495_a10/
LA  - ru
ID  - DANMA_2020_495_a10
ER  - 
%0 Journal Article
%A V. P. Platonov
%A M. M. Petrunin
%T On the finiteness of the number of expansions into a continued fraction of $\sqrt f$ for cubic polynomials over algebraic number fields
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 48-54
%V 495
%U http://geodesic.mathdoc.fr/item/DANMA_2020_495_a10/
%G ru
%F DANMA_2020_495_a10
V. P. Platonov; M. M. Petrunin. On the finiteness of the number of expansions into a continued fraction of $\sqrt f$ for cubic polynomials over algebraic number fields. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 495 (2020), pp. 48-54. http://geodesic.mathdoc.fr/item/DANMA_2020_495_a10/

[1] Platonov V.P., “Teoretiko-chislovye svoistva giperellipticheskikh polei i problema krucheniya v yakobianakh giperellipticheskikh krivykh nad polem ratsionalnykh chisel”, UMN, 69:1(415) (2014), 3–38 | DOI | MR | Zbl

[2] Platonov V.P., Petrunin M.M., “Gruppy S-edinits i problema periodichnosti nepreryvnykh drobei v giperellipticheskikh polyakh”, Tr. MIAN, 302, 2018, 354–376 | DOI | Zbl

[3] Platonov V.P., Fedorov G.V., “O probleme periodichnosti nepreryvnykh drobei v giperellipticheskikh polyakh”, Matem. sb., 209:4 (2018), 54–94 | DOI | MR | Zbl

[4] Kubert D.S., “Universal bounds on the torsion of elliptic curves”, Proc. London Mathematical Society, 3:2 (1976), 193–237 | DOI | MR | Zbl

[5] Platonov V.P., Fedorov G.V., “O probleme klassifikatsii periodicheskikh nepreryvnykh drobei v giperellipticheskikh polyakh”, UMN, 75:4 (454) (2020), 211–212 | DOI | MR | Zbl

[6] Platonov V.P., Zhgun V.S., Petrunin M.M., “O probleme periodichnosti razlozhenii v nepreryvnuyu drob $\sqrt f $ dlya kubicheskikh mnogochlenov nad chislovymi polyami”, Doklady RAN. Matematika, informatika, protsessy upravleniya, 493 (2020), 32–37 | DOI | Zbl

[7] Platonov V.P., Petrunin M.M., Shteinikov Yu.N., “O konechnosti chisla ellipticheskikh polei s zadannymi stepenyami $S$-edinits i periodicheskim razlozheniem $\sqrt f $”, DAN, 488:3 (2019), 237–242 | Zbl

[8] Parent P., “Bornes effectives pour la torsion des courbes elliptiques sur les corps de nombres”, Journal für die reine und angewandte Mathematik, 1999:506 (1999), 85–116 | DOI | MR | Zbl

[9] Kenku M.A., Momose F., “Torsion points on elliptic curves defined over quadratic fields”, Nagoya Mathematical Journal, 109 (1988), 125–149 | DOI | MR | Zbl

[10] Derickx M., Etropolski A., van Hoeij M., Morrow J.S., Zureick-Brown D., Sporadic cubic torsion, 2020, arXiv: 2007.13929 | MR | Zbl

[11] Sutherland A., “Constructing elliptic curves over finite fields with prescribed torsion”, Mathematics of Computation, 81:278 (2012), 1131–1147 | DOI | MR | Zbl

[12] Mazur B., “Rational points on modular curves”, Modular Functions of one Variable V, eds. Serre J.-P., Zagier D.B., Springer, B.–Heidelberg, 1977, 107–148 | DOI | MR

[13] Jeon D., Kim C.H., Park E., “On the torsion of elliptic curves over quartic number fields”, J. London Math. Soc., 74:1 (2006), 1–12 | DOI | MR | Zbl

[14] Derickx M., Sutherland A., “Torsion subgroups of elliptic curves over quintic and sextic number fields”, Proc. American Mathematical Society, 145:10 (2017), 4233–4245 | DOI | MR | Zbl

[15] Jeon D., Kim C.H., Schweizer A., “On the torsion of elliptic curves over cubic number fields”, Acta Arithmetica, 113 (2004), 291–301 | DOI | MR | Zbl