Orthogonal elements in nonseparable rearrangement invariant spaces
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 495 (2020), pp. 5-7 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $E$ be a nonseparable rearrangement invariant space, and let $E_0$ denote the closure of the set of all bounded functions in $E$. We study elements of $E$ orthogonal to the subspace $E_0$, i.e., elements $x\in E$ such that $\|x\|_E\le\|x+y\|_E$ for any $y\in E_0$.
Keywords: nonseparable Banach space, rearrangement invariant space, Orlicz space
Mots-clés : Marcinkiewicz space, orthogonal elements.
@article{DANMA_2020_495_a0,
     author = {S. V. Astashkin and E. M. Semenov},
     title = {Orthogonal elements in nonseparable rearrangement invariant spaces},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {5--7},
     year = {2020},
     volume = {495},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_495_a0/}
}
TY  - JOUR
AU  - S. V. Astashkin
AU  - E. M. Semenov
TI  - Orthogonal elements in nonseparable rearrangement invariant spaces
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 5
EP  - 7
VL  - 495
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_495_a0/
LA  - ru
ID  - DANMA_2020_495_a0
ER  - 
%0 Journal Article
%A S. V. Astashkin
%A E. M. Semenov
%T Orthogonal elements in nonseparable rearrangement invariant spaces
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 5-7
%V 495
%U http://geodesic.mathdoc.fr/item/DANMA_2020_495_a0/
%G ru
%F DANMA_2020_495_a0
S. V. Astashkin; E. M. Semenov. Orthogonal elements in nonseparable rearrangement invariant spaces. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 495 (2020), pp. 5-7. http://geodesic.mathdoc.fr/item/DANMA_2020_495_a0/

[1] Lindenstrauss J., Tzafriri L., Classical Banach spaces II. Function spaces, Classics in Mathematics, 97, Springer-Verlag, B., 1979, 246 pp. | MR | Zbl

[2] Krein S.G., Petunin Yu.I., Semenov E.M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978, 400 pp. | MR

[3] Krasnoselskii M.A., Rutitskii Ya.B., Vypuklye funktsii i prostranstva Orlicha, Fizmatgiz, M., 1958, 271 pp. | MR

[4] Rao M.M., Ren Z.D., Theory of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics, 146, Marcel Dekker Inc., N.Y., 1991, 445 pp. | MR | Zbl

[5] Astashkin S.V., Semenov E.M., “Ob odnom svoistve simmetrichnykh prostranstv, vtoroe assotsiirovannoe prostranstvo k kotorym neseparabelno”, Matem. zametki, 107:1 (2020), 11–22 | DOI | MR | Zbl