Kirchhoff index for circulant graphs and its asymptotics
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 494 (2020), pp. 43-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The aim of this paper is to find an analytical formula for the Kirchhoff index of circulant graphs $C_n(s_1,s_2,\dots,s_k)$ and $C_{2n}(s_1,s_2,\dots,s_k,n)$ with even and odd valency, respectively. The asymptotic behavior of the Kirchhoff index as $n\to\infty$ is investigated. We proof that the Kirchhoff index of a circulant graph can be expressed as a sum of a cubic polynomial in $n$ and a quantity that vanishes exponentially as $n\to\infty$.
Mots-clés : circulant graph, Laplacian matrix
Keywords: eigenvalue, Wiener index, Kirchhoff index.
@article{DANMA_2020_494_a9,
     author = {A. D. Mednykh and I. A. Mednykh},
     title = {Kirchhoff index for circulant graphs and its asymptotics},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {43--47},
     year = {2020},
     volume = {494},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_494_a9/}
}
TY  - JOUR
AU  - A. D. Mednykh
AU  - I. A. Mednykh
TI  - Kirchhoff index for circulant graphs and its asymptotics
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 43
EP  - 47
VL  - 494
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_494_a9/
LA  - ru
ID  - DANMA_2020_494_a9
ER  - 
%0 Journal Article
%A A. D. Mednykh
%A I. A. Mednykh
%T Kirchhoff index for circulant graphs and its asymptotics
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 43-47
%V 494
%U http://geodesic.mathdoc.fr/item/DANMA_2020_494_a9/
%G ru
%F DANMA_2020_494_a9
A. D. Mednykh; I. A. Mednykh. Kirchhoff index for circulant graphs and its asymptotics. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 494 (2020), pp. 43-47. http://geodesic.mathdoc.fr/item/DANMA_2020_494_a9/

[1] Mohar B., Graph theory, combinatorics, and applications, v. 2, eds. Y. Alavi, G. Chartrand, O.R. Oellermann, A.J. Schwenk, Wiley, New York, 1991, 871–898 | MR | Zbl

[2] Klein D.J., Randić M., J. Math. Chem., 12 (1993), 81–95 | DOI | MR

[3] Wiener H., J. Amer. Chem. Soc., 69:1 (1947), 17–20 | DOI

[4] Gutman I., Mohar B., J. Chem. Inf. Comput. Sci., 36 (1996), 982–985 | DOI

[5] Zhu H.Y., Klein D.J., Lukovits I., J. Chemical Information and Computer Sciences, 36:3 (1996), 420–428 | DOI

[6] Lukovits I., Nikolić S., Trinajstić N., Int. J. Quantum Chem., 71 (1999), 217–225 | 3.0.CO;2-C class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[7] Palacios J.L., Int. J. Quantum Chem., 81 (2001), 135–140 | 3.0.CO;2-G class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[8] Zhang H., Yang Y., Int. J. Quantum Chem., 107 (2007), 330–339 | DOI

[9] Xiao W., Gutman I., Theor. Chem. Acc., 110 (2009), 284–289 | DOI

[10] Luzhen Ye, Linear and Multilinear Algebra, 59:6 (2011), 645–650 | DOI | MR | Zbl

[11] Cinkir Z., J. Math. Chem., 54:4 (2016), 955–966 | DOI | MR | Zbl

[12] Kagan M., Mata B., Math. Comput. Sci., 13 (2019), 105–115 | DOI | MR | Zbl

[13] Baigonagova G.A., Mednykh A.D., Sib. Electron. Math. Rep., 16 (2019), 1654–1661 | MR