Numerical solution of scalar diffraction problems in integral statements on spectra of integral operators
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 494 (2020), pp. 38-42 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Fredholm boundary integral equations of the first kind with a single unknown function are considered. Each equation is conditionally equivalent to a scalar diffraction (transmission) problem on a three-dimensional homogeneous inclusion and is solved numerically. A modified numerical method for solving the diffraction problem on the spectrum of an integral operator is proposed and tested in the case where the conditions for the correct solvability of the integral equation and its equivalence to the original problem are violated.
Mots-clés : diffraction
Keywords: integral equation, spectrum, numerical method.
@article{DANMA_2020_494_a8,
     author = {A. A. Kashirin and S. I. Smagin},
     title = {Numerical solution of scalar diffraction problems in integral statements on spectra of integral operators},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {38--42},
     year = {2020},
     volume = {494},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_494_a8/}
}
TY  - JOUR
AU  - A. A. Kashirin
AU  - S. I. Smagin
TI  - Numerical solution of scalar diffraction problems in integral statements on spectra of integral operators
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 38
EP  - 42
VL  - 494
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_494_a8/
LA  - ru
ID  - DANMA_2020_494_a8
ER  - 
%0 Journal Article
%A A. A. Kashirin
%A S. I. Smagin
%T Numerical solution of scalar diffraction problems in integral statements on spectra of integral operators
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 38-42
%V 494
%U http://geodesic.mathdoc.fr/item/DANMA_2020_494_a8/
%G ru
%F DANMA_2020_494_a8
A. A. Kashirin; S. I. Smagin. Numerical solution of scalar diffraction problems in integral statements on spectra of integral operators. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 494 (2020), pp. 38-42. http://geodesic.mathdoc.fr/item/DANMA_2020_494_a8/

[1] Kashirin A.A., Smagin S.I., Vychislitelnye tekhnologii, 23:2 (2018), 20–36

[2] Martin P.A., Wave Motion, 13:2 (1991), 185–192 | DOI | MR | Zbl

[3] Kleinman R.E., Martin P.A., SIAM J. Appl. Math, 48:2 (1988), 307–325 | DOI | MR | Zbl

[4] Mohsen A., Hesham M., Communications in Numerical Methods in Engineering, 22:11 (2006), 1067–1076 | DOI | MR | Zbl

[5] Laliena A.R., Rapun M.-L., Sayas F.-J., Appl. Numer. Math., 59:11 (2009), 2814–2823 | DOI | MR | Zbl

[6] Kashirin A.A., Smagin S.I., ZhVMiMF, 52:8 (2012), 1492–1505 | MR | Zbl

[7] McLean W., Strongly elliptic systems and boundary integral equations, Cambridge University Press, Cambridge, 2000, 372 pp. | MR | Zbl

[8] Saad Y., Schultz M., SIAM J. Sci. Statist. Comput., 7:3 (1986), 856–869 | DOI | MR | Zbl