Mots-clés : quasiconformal analysis
@article{DANMA_2020_494_a4,
author = {S. K. Vodopyanov},
title = {Composition operators on weighted {Sobolev} spaces and the theory of $\mathscr{Q}_p$-homeomorphisms},
journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
pages = {21--25},
year = {2020},
volume = {494},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DANMA_2020_494_a4/}
}
TY - JOUR
AU - S. K. Vodopyanov
TI - Composition operators on weighted Sobolev spaces and the theory of $\mathscr{Q}_p$-homeomorphisms
JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY - 2020
SP - 21
EP - 25
VL - 494
UR - http://geodesic.mathdoc.fr/item/DANMA_2020_494_a4/
LA - ru
ID - DANMA_2020_494_a4
ER -
%0 Journal Article
%A S. K. Vodopyanov
%T Composition operators on weighted Sobolev spaces and the theory of $\mathscr{Q}_p$-homeomorphisms
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 21-25
%V 494
%U http://geodesic.mathdoc.fr/item/DANMA_2020_494_a4/
%G ru
%F DANMA_2020_494_a4
S. K. Vodopyanov. Composition operators on weighted Sobolev spaces and the theory of $\mathscr{Q}_p$-homeomorphisms. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 494 (2020), pp. 21-25. http://geodesic.mathdoc.fr/item/DANMA_2020_494_a4/
[1] Vodopyanov S.K., Formula Teilora i funktsionalnye prostranstva, Uch. posobie, NGU, Novosibirsk, 1988
[2] Vodopyanov S.K., Sib. matem. zhurn., 30:5 (1989), 25–41 | MR | Zbl
[3] Vodopyanov S.K., Geometricheskie aspekty prostranstv obobschenno-differentsiruemykh funktsii, Avtoreferat diss. ... dokt. fiz.-mat. nauk, Izd-vo In-ta matematiki im. S.L. Soboleva SO RAN, Novosibirsk, 1991
[4] Vodopyanov S.K., Matem. sb., 203:10 (2012), 1383–1410 | DOI | Zbl
[5] Martio O., Ryazanov V., Srebro U., Yakubov E., Moduli in Modern Mapping Theory, Springer-Verlag, N.Y., 2008 | MR
[6] Mazya V.G., Klassy mnozhestv i teoremy vlozheniya funktsionalnykh klassov. Nekotorye problemy teorii ellipticheskikh operatorov, Avtoreferat diss. ... kand. fiz.-mat. nauk, Izd-vo Leningr. un-ta, L., 1961
[7] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987
[8] Ponomarev S.P., Matem. zametki, 58:3 (1995), 411–418 | MR | Zbl
[9] Gol'dshtein V., Gurov L., Romanov A., Israel J. Math., 91 (1995), 31–90 | DOI | MR
[10] Hesse J., Ark. Mat., 13 (1975), 131–144 | DOI | MR | Zbl
[11] Reshetnyak Yu.G., Prostranstvennye otobrazheniya s ogranichennym iskazheniem, Nauka, Sib. otdelenie, Novosibirsk, 1982 | MR
[12] Mostow G.D., Inst. Hautes Études Sci. Publ. Math., 34:1 (1968), 53–104 | DOI | Zbl
[13] Väisälä J., Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Math., Springer, B., 1971, 229 pp. | DOI | MR | Zbl
[14] Gehring F.W., “Lipschitz mappings and the $p$-capacity of rings in $n$-space”, Advances in the theory of Riemann surfaces, Proc. Conf. (Stony Brook, N.Y., 1969), Princeton Univ. Press, Princeton (N.J.), 1971, 175–193 | DOI | MR