Composition operators on weighted Sobolev spaces and the theory of $\mathscr{Q}_p$-homeomorphisms
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 494 (2020), pp. 21-25 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We define the scale $\mathscr{Q}_p$, $n-1$, of homeomorphisms of spatial domains in $\mathbb{R}^n$, a geometric description of which is due to the control of the behavior of the p-capacity of condensers in the image through the weighted p-capacity of the condensers in the preimage. For $p=n$ the class $\mathscr{Q}_n$ of mappings contains the class of so-called $\mathscr{Q}_p$-homeomorphisms, which have been actively studied over the past 25 years. An equivalent functional and analytic description of these classes $\mathscr{Q}_p$ is obtained. It is based on the problem of the properties of the composition operator of a weighted Sobolev space into a nonweighted one induced by a map inverse to some of the class $\mathscr{Q}_p$.
Keywords: Sobolev space, composition operator, capacity estimate.
Mots-clés : quasiconformal analysis
@article{DANMA_2020_494_a4,
     author = {S. K. Vodopyanov},
     title = {Composition operators on weighted {Sobolev} spaces and the theory of $\mathscr{Q}_p$-homeomorphisms},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {21--25},
     year = {2020},
     volume = {494},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_494_a4/}
}
TY  - JOUR
AU  - S. K. Vodopyanov
TI  - Composition operators on weighted Sobolev spaces and the theory of $\mathscr{Q}_p$-homeomorphisms
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 21
EP  - 25
VL  - 494
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_494_a4/
LA  - ru
ID  - DANMA_2020_494_a4
ER  - 
%0 Journal Article
%A S. K. Vodopyanov
%T Composition operators on weighted Sobolev spaces and the theory of $\mathscr{Q}_p$-homeomorphisms
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 21-25
%V 494
%U http://geodesic.mathdoc.fr/item/DANMA_2020_494_a4/
%G ru
%F DANMA_2020_494_a4
S. K. Vodopyanov. Composition operators on weighted Sobolev spaces and the theory of $\mathscr{Q}_p$-homeomorphisms. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 494 (2020), pp. 21-25. http://geodesic.mathdoc.fr/item/DANMA_2020_494_a4/

[1] Vodopyanov S.K., Formula Teilora i funktsionalnye prostranstva, Uch. posobie, NGU, Novosibirsk, 1988

[2] Vodopyanov S.K., Sib. matem. zhurn., 30:5 (1989), 25–41 | MR | Zbl

[3] Vodopyanov S.K., Geometricheskie aspekty prostranstv obobschenno-differentsiruemykh funktsii, Avtoreferat diss. ... dokt. fiz.-mat. nauk, Izd-vo In-ta matematiki im. S.L. Soboleva SO RAN, Novosibirsk, 1991

[4] Vodopyanov S.K., Matem. sb., 203:10 (2012), 1383–1410 | DOI | Zbl

[5] Martio O., Ryazanov V., Srebro U., Yakubov E., Moduli in Modern Mapping Theory, Springer-Verlag, N.Y., 2008 | MR

[6] Mazya V.G., Klassy mnozhestv i teoremy vlozheniya funktsionalnykh klassov. Nekotorye problemy teorii ellipticheskikh operatorov, Avtoreferat diss. ... kand. fiz.-mat. nauk, Izd-vo Leningr. un-ta, L., 1961

[7] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987

[8] Ponomarev S.P., Matem. zametki, 58:3 (1995), 411–418 | MR | Zbl

[9] Gol'dshtein V., Gurov L., Romanov A., Israel J. Math., 91 (1995), 31–90 | DOI | MR

[10] Hesse J., Ark. Mat., 13 (1975), 131–144 | DOI | MR | Zbl

[11] Reshetnyak Yu.G., Prostranstvennye otobrazheniya s ogranichennym iskazheniem, Nauka, Sib. otdelenie, Novosibirsk, 1982 | MR

[12] Mostow G.D., Inst. Hautes Études Sci. Publ. Math., 34:1 (1968), 53–104 | DOI | Zbl

[13] Väisälä J., Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Math., Springer, B., 1971, 229 pp. | DOI | MR | Zbl

[14] Gehring F.W., “Lipschitz mappings and the $p$-capacity of rings in $n$-space”, Advances in the theory of Riemann surfaces, Proc. Conf. (Stony Brook, N.Y., 1969), Princeton Univ. Press, Princeton (N.J.), 1971, 175–193 | DOI | MR