@article{DANMA_2020_494_a21,
author = {A. V. Il'in and P. A. Krylov and A. S. Fursov},
title = {An approach to the stabilization problem of a parametrically uncertain linear nonstationary system},
journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
pages = {97--104},
year = {2020},
volume = {494},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DANMA_2020_494_a21/}
}
TY - JOUR AU - A. V. Il'in AU - P. A. Krylov AU - A. S. Fursov TI - An approach to the stabilization problem of a parametrically uncertain linear nonstationary system JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2020 SP - 97 EP - 104 VL - 494 UR - http://geodesic.mathdoc.fr/item/DANMA_2020_494_a21/ LA - ru ID - DANMA_2020_494_a21 ER -
%0 Journal Article %A A. V. Il'in %A P. A. Krylov %A A. S. Fursov %T An approach to the stabilization problem of a parametrically uncertain linear nonstationary system %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2020 %P 97-104 %V 494 %U http://geodesic.mathdoc.fr/item/DANMA_2020_494_a21/ %G ru %F DANMA_2020_494_a21
A. V. Il'in; P. A. Krylov; A. S. Fursov. An approach to the stabilization problem of a parametrically uncertain linear nonstationary system. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 494 (2020), pp. 97-104. http://geodesic.mathdoc.fr/item/DANMA_2020_494_a21/
[1] Gaishun I.V., Vvedenie v teoriyu lineinykh nestatsionarnykh sistem, Editorial URSS, M., 2010 | MR
[2] Makarov E.K., Upravlyaemost asimptoticheskikh invariantov nestatsionarnykh lineinykh sistem, Belarus. navuka, Minsk, 2012
[3] Polyak B.T., Khlebnikov M.V., Rapoport L.B., Matematicheskaya teoriya avtomaticheskogo upravleniya, LENAND, M., 2019
[4] Fursov A.S., Khusainov E.F., “K voprosu o stabilizatsii pereklyuchaemykh lineinykh sistem”, Differents. uravneniya, 51:11 (2015), 1522–1533 | DOI | MR | Zbl
[5] Fursov A.S., Odnovremennaya stabilizatsiya: teoriya postroeniya universalnogo regulyatora dlya semeistva dinamicheskikh ob'ektov, ARGAMAK-MEDIA, M., 2016
[6] Polyak B.T., Scherbakov P.S., “Sverkhustoichivye lineinye sistemy upravleniya”, AiT, 2002, no. 8, 37–53 | Zbl
[7] Kozlov A.A., Ints I.V., “O ravnomernoi globalnoi dostizhimosti dvumernykh lineinykh sistem s lokalno integriruemymi koeffitsientami”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 27:2 (2017), 178–192 | MR | Zbl
[8] Zaitsev V.A., “Ravnomernaya polnaya upravlyaemost i globalnoe upravlenie asimptoticheskimi invariantami lineinoi sistemy v forme Khessenberga”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 25:3 (2015), 318–337 | Zbl
[9] Afanasev V.N., Upravlenie neopredelennymi sistemami, RUDN, M., 2008
[10] Pegat A., Nechetkoe modelirovanie i upravlenie, BINOM, Laboratoriya znanii, M., 2013
[11] Gelig A.Kh., Zuber I.E., “Stabilizatsiya nekotorykh klassov neopredelennykh sistem s pomoschyu pryamogo i nepryamogo upravleniya. I. Nepreryvnye sistemy”, AiT, 2012, no. 8, 76–90 | Zbl
[12] Gelig A.Kh., Zuber I.E., Zakharenkov M.S., “Novye klassy stabiliziruemykh neopredelennykh sistem”, AiT, 2016, no. 10, 93–108 | Zbl
[13] Morozov M.V., “Algoritmy analiza robastnoi ustoichivosti nepreryvnykh sistem upravleniya s periodicheskimi ogranicheniyami”, Probl. upravl., 2014, no. 2, 26–31
[14] Richards A. G., Robust constrained model predictive control, Massachusetts, 2005
[15] Izobov N.A., Ilin A.V., “Kontinualnyi variant effekta Perrona smeny znachenii kharakteristicheskikh pokazatelei”, Differents. uravneniya, 53:11 (2017), 1427–1439 | DOI | Zbl