An approach to the stabilization problem of a parametrically uncertain linear nonstationary system
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 494 (2020), pp. 97-104 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An approach based on the method of predictive models and the method of superstabilization is proposed to solve the problem of stabilization of parametrically uncertain linear nonstationary systems. The parametric uncertainty is specified using a family of compact sets in the space of square matrices. This approach is rigorously justified for second-order systems, but can be generalized to systems of arbitrary order.
Keywords: stabilization theory, stabilization of linear nonstationary systems, controllability.
@article{DANMA_2020_494_a21,
     author = {A. V. Il'in and P. A. Krylov and A. S. Fursov},
     title = {An approach to the stabilization problem of a parametrically uncertain linear nonstationary system},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {97--104},
     year = {2020},
     volume = {494},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2020_494_a21/}
}
TY  - JOUR
AU  - A. V. Il'in
AU  - P. A. Krylov
AU  - A. S. Fursov
TI  - An approach to the stabilization problem of a parametrically uncertain linear nonstationary system
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 97
EP  - 104
VL  - 494
UR  - http://geodesic.mathdoc.fr/item/DANMA_2020_494_a21/
LA  - ru
ID  - DANMA_2020_494_a21
ER  - 
%0 Journal Article
%A A. V. Il'in
%A P. A. Krylov
%A A. S. Fursov
%T An approach to the stabilization problem of a parametrically uncertain linear nonstationary system
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 97-104
%V 494
%U http://geodesic.mathdoc.fr/item/DANMA_2020_494_a21/
%G ru
%F DANMA_2020_494_a21
A. V. Il'in; P. A. Krylov; A. S. Fursov. An approach to the stabilization problem of a parametrically uncertain linear nonstationary system. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 494 (2020), pp. 97-104. http://geodesic.mathdoc.fr/item/DANMA_2020_494_a21/

[1] Gaishun I.V., Vvedenie v teoriyu lineinykh nestatsionarnykh sistem, Editorial URSS, M., 2010 | MR

[2] Makarov E.K., Upravlyaemost asimptoticheskikh invariantov nestatsionarnykh lineinykh sistem, Belarus. navuka, Minsk, 2012

[3] Polyak B.T., Khlebnikov M.V., Rapoport L.B., Matematicheskaya teoriya avtomaticheskogo upravleniya, LENAND, M., 2019

[4] Fursov A.S., Khusainov E.F., “K voprosu o stabilizatsii pereklyuchaemykh lineinykh sistem”, Differents. uravneniya, 51:11 (2015), 1522–1533 | DOI | MR | Zbl

[5] Fursov A.S., Odnovremennaya stabilizatsiya: teoriya postroeniya universalnogo regulyatora dlya semeistva dinamicheskikh ob'ektov, ARGAMAK-MEDIA, M., 2016

[6] Polyak B.T., Scherbakov P.S., “Sverkhustoichivye lineinye sistemy upravleniya”, AiT, 2002, no. 8, 37–53 | Zbl

[7] Kozlov A.A., Ints I.V., “O ravnomernoi globalnoi dostizhimosti dvumernykh lineinykh sistem s lokalno integriruemymi koeffitsientami”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 27:2 (2017), 178–192 | MR | Zbl

[8] Zaitsev V.A., “Ravnomernaya polnaya upravlyaemost i globalnoe upravlenie asimptoticheskimi invariantami lineinoi sistemy v forme Khessenberga”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 25:3 (2015), 318–337 | Zbl

[9] Afanasev V.N., Upravlenie neopredelennymi sistemami, RUDN, M., 2008

[10] Pegat A., Nechetkoe modelirovanie i upravlenie, BINOM, Laboratoriya znanii, M., 2013

[11] Gelig A.Kh., Zuber I.E., “Stabilizatsiya nekotorykh klassov neopredelennykh sistem s pomoschyu pryamogo i nepryamogo upravleniya. I. Nepreryvnye sistemy”, AiT, 2012, no. 8, 76–90 | Zbl

[12] Gelig A.Kh., Zuber I.E., Zakharenkov M.S., “Novye klassy stabiliziruemykh neopredelennykh sistem”, AiT, 2016, no. 10, 93–108 | Zbl

[13] Morozov M.V., “Algoritmy analiza robastnoi ustoichivosti nepreryvnykh sistem upravleniya s periodicheskimi ogranicheniyami”, Probl. upravl., 2014, no. 2, 26–31

[14] Richards A. G., Robust constrained model predictive control, Massachusetts, 2005

[15] Izobov N.A., Ilin A.V., “Kontinualnyi variant effekta Perrona smeny znachenii kharakteristicheskikh pokazatelei”, Differents. uravneniya, 53:11 (2017), 1427–1439 | DOI | Zbl