Deviation of an object with a striking device from a visibility area of an observer in $\mathbb{R}^3$
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 494 (2020), pp. 93-96
Cet article a éte moissonné depuis la source Math-Net.Ru
An autonomous object possessing a high-speed striking device is moving under observation conditions. Threatened by the device, a spatial observer has to hide behind convex fragments of the surrounding terrain. The paper describes the routes from a given movement corridor along which the object could pass remaining hidden from the observer by choosing a suitable velocity of motion.
Mots-clés :
navigation, observer.
Keywords: autonomous object, trajectory
Keywords: autonomous object, trajectory
@article{DANMA_2020_494_a20,
author = {V. I. Berdyshev},
title = {Deviation of an object with a striking device from a visibility area of an observer in $\mathbb{R}^3$},
journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
pages = {93--96},
year = {2020},
volume = {494},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DANMA_2020_494_a20/}
}
TY - JOUR
AU - V. I. Berdyshev
TI - Deviation of an object with a striking device from a visibility area of an observer in $\mathbb{R}^3$
JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY - 2020
SP - 93
EP - 96
VL - 494
UR - http://geodesic.mathdoc.fr/item/DANMA_2020_494_a20/
LA - ru
ID - DANMA_2020_494_a20
ER -
%0 Journal Article
%A V. I. Berdyshev
%T Deviation of an object with a striking device from a visibility area of an observer in $\mathbb{R}^3$
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2020
%P 93-96
%V 494
%U http://geodesic.mathdoc.fr/item/DANMA_2020_494_a20/
%G ru
%F DANMA_2020_494_a20
V. I. Berdyshev. Deviation of an object with a striking device from a visibility area of an observer in $\mathbb{R}^3$. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 494 (2020), pp. 93-96. http://geodesic.mathdoc.fr/item/DANMA_2020_494_a20/
[1] Berdyshev V.I., Kostousov V.B., Ekstremalnye zadachi i modeli navigatsii po geofizicheskim polyam, Iz-vo UrO RAN, Ekaterinburg, 2007, 270 pp. | MR
[2] Berdyshev V.I., Kostousov V.B., Popov A.A., “Optimalnaya traektoriya v ${{\mathbb{R}}^{2}}$ v usloviyakh nablyudeniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 24, no. 1, 2018, 40–52
[3] Berdyshev V.I., “Zadacha bezopasnogo slezheniya za ob'ektom, uklonyayuschimsya ot nablyudeniya v ${{\mathbb{R}}^{2}}$”, Doklady RAN. Matematika, informatika, protsessy upravleniya, 493 (2020), 82–85
[4] Lyu V., “Metody planirovaniya puti v srede s prepyatstviyami (obzor)”, Matematika i mat. modelirovanie, 2018, no. 1, 15–58